Advertisements
Advertisements
प्रश्न
If cosecθ = `1(9)/(20)`, show that `(1 - sinθ + cosθ)/(1 + sinθ + cosθ) = (3)/(7)`
उत्तर
cosecθ = `1(9)/(20) = (29)/(20)`
sinθ = `(1)/(cosecθ) = (20)/(29) = "Perpendicular"/"Hypotenuse"`
Base
= `sqrt(("Hypotenuse")^2 - ("Perpendicular")^2`
= `sqrt((29)^2 - (20)^2`
= `sqrt(841 - 400)`
= `sqrt(441)`
= 21
cosθ = `"Base"/"Hypotenuse" = (21)/(29)`
To show: `(1 - sinθ + cosθ)/(1 + sinθ + cosθ) = (3)/(7)`
`(1 - sinθ + cosθ)/(1 + sinθ + cosθ)`
= `(1 - 20/29 + 21/29)/(1 + 20/29 + 21/29)`
= `(29 - 20 + 21)/(29 + 20 + 21)`
= `(30)/(70)`
= `(3)/(7)`.
APPEARS IN
संबंधित प्रश्न
In the given figure, AD is perpendicular to BC. Find:
`(3)/("sin" x) + (4)/("cos" y) - 4 "tan" y`
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 3 - 2 cos ∠BAC + 3 cot ∠BCD
If 4 sinθ = 3 cosθ, find tan2θ + cot2θ
If 8tanA = 15, find sinA - cosA.
If 4sinθ = `sqrt(13)`, find the value of `(4sinθ - 3cosθ)/(2sinθ + 6cosθ)`
If 35 sec θ = 37, find the value of sin θ - sin θ tan θ.
If b tanθ = a, find the values of `(cosθ + sinθ)/(cosθ - sinθ)`.
If a cotθ = b, prove that `("a"sinθ - "b"cosθ)/("a"sinθ + "b"cosθ) = ("a"^2 - "b"^2)/("a"^2 + "b"^2)`
If secA = `(17)/(8)`, verify that `(3 - 4sin^2 "A")/(4 cos^2 "A" - 3)= (3 - tan^2"A")/(1 - 3tan^2"A")`
If 3 tanθ = 4, prove that `sqrt(secθ - "cosec"θ)/(sqrt(secθ - "cosec"θ)) = (1)/sqrt(7)`.