Advertisements
Advertisements
प्रश्न
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 3 - 2 cos ∠BAC + 3 cot ∠BCD
उत्तर
ΔBDC is a right-angled triangle.
∴ BC2
= BD2 +DC2
= 32 + 42
= 9 + 16
= 25
⇒ BC = 5cm
ΔABC is a right-angled triangle.
∴ AB2
= AC2 - BC2
= 132 - 52
= 169 - 25
= 144
⇒ AB = 12cm
3 - 2 cos ∠BAC + 3 cot ∠BCD
= `3 - 2 xx "AB"/"AC" + 3 xx "DC"/"BD"`
= `3 - 2 xx (12)/(13) + 3 xx (4)/(3)`
= `3 - (24)/(13) + 4`
= `7 - (24)/(13)`
= `(91 - 24)/(13)`
= `(67)/(13)`.
APPEARS IN
संबंधित प्रश्न
In the given figure, ∠Q = 90°, PS is a median om QR from P, and RT divides PQ in the ratio 1 : 2. Find: `("tan" ∠"PSQ")/("tan"∠"PRQ")`
If 4 sinθ = 3 cosθ, find tan2θ + cot2θ
If 8tanA = 15, find sinA - cosA.
If 5cosθ = 3, find the value of `(4cosθ - sinθ)/(2cosθ + sinθ)`
If 5tanθ = 12, find the value of `(2sinθ - 3cosθ)/(4sinθ - 9cosθ)`.
If cosecθ = `1(9)/(20)`, show that `(1 - sinθ + cosθ)/(1 + sinθ + cosθ) = (3)/(7)`
If 12 cotθ = 13, find the value of `(2sinθ cosθ)/(cos^2θ - sin^2θ)`.
If secA = `(5)/(4)`, cerify that `(3sin"A" - 4sin^3"A")/(4cos^3"A" - 3cos"A") = (3tan"A" - tan^3"A")/(1 - 3tan^2"A")`.
If sinθ = `(3)/(4)`, prove that `sqrt(("cosec"^2θ - cot^2θ)/(sec^2θ - 1)) = sqrt(7)/(3)`.
If tan θ = `"m"/"n"`, show that `"m sin θ - n cos θ"/"m sinθ + n cos θ" = ("m"^2 - "n"^2)/("m"^2 + "n"^2)`