Advertisements
Advertisements
प्रश्न
If sinθ = `(3)/(4)`, prove that `sqrt(("cosec"^2θ - cot^2θ)/(sec^2θ - 1)) = sqrt(7)/(3)`.
उत्तर
sinθ = `(3)/(4)`
`"Perpendicular"/"Hypotenuse" = (3)/(4)`
Base
= `sqrt(("Hypotenuse")^2 - ("Perpendicuar")^2`
= `sqrt(16 - 9)`
= `sqrt(7)`
cosecθ = `(4)/(3)`
cotθ = `"Base"/"Perpendicular" = sqrt(7)/(3)`
secθ = `"Hypotenuse"/"Base" = (4)/sqrt(7)`
Tp prove `sqrt(("cosec"^2θ - cot^2θ)/(sec^2θ - 1)) = sqrt(7)/(3)`
`sqrt(("cosec"^2θ - cot^2θ)/(sec^2θ - 1)`
= `sqrt(((4/3)^2 - (sqrt(7)/3)^2)/((4/sqrt(7))^2 - 1)`
= `sqrt((16 /9 - 7/9)/(16/7 - 1)`
= `sqrt(((16 - 7)/9)/((16 - 7)/7)`
= `sqrt((9/9)/(9/7)`
= `sqrt((1)/(9/7)`
= `sqrt(7/9)`
= `sqrt(7)/(3)`.
APPEARS IN
संबंधित प्रश्न
In the given figure, ∠Q = 90°, PS is a median om QR from P, and RT divides PQ in the ratio 1 : 2. Find: `("tan" ∠"TSQ")/("tan"∠"PRQ")`
In the given figure, AD is perpendicular to BC. Find: 15 tan y
In the given figure, AD is perpendicular to BC. Find:
`(3)/("sin" x) + (4)/("cos" y) - 4 "tan" y`
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 3 - 2 cos ∠BAC + 3 cot ∠BCD
If 24cosθ = 7 sinθ, find sinθ + cosθ.
If 4 sinθ = 3 cosθ, find `(6sinθ - 2cosθ )/(6sinθ + 2cosθ )`
If 3cosθ - 4sinθ = 2cosθ + sinθ, find tanθ.
If 4sinθ = `sqrt(13)`, find the value of 4sin3θ - 3sinθ
If 5tanθ = 12, find the value of `(2sinθ - 3cosθ)/(4sinθ - 9cosθ)`.
If cotθ = `sqrt(7)`, show that `("cosec"^2θ -sec^2θ)/("cosec"^2θ + sec^2θ) = (3)/(4)`