Advertisements
Advertisements
प्रश्न
If secA = `(5)/(4)`, cerify that `(3sin"A" - 4sin^3"A")/(4cos^3"A" - 3cos"A") = (3tan"A" - tan^3"A")/(1 - 3tan^2"A")`.
उत्तर
sec A = `(5)/(4)`
⇒ cos A = `(4)/(5) = "Base"/"Hypotenuse"`
Perpendicular
= `sqrt(("Hypotenuse")^2 - ("Base")^2`
= `sqrt(25 - 16)`
= `sqrt(9)`
= 3
sin A = `"Perpendicular"/"Hypotenuse" = (3)/(5)`
tan A = `"Perpendicular"/"Base" = (3)/(4)`
To show: `(3sin"A" - 4sin^3"A")/(4cos^3"A" - 3cos"A") = (3tan"A" - tan^3"A")/(1 - 3tan^2"A")`.
L.H.S. = `(3sin"A" - 4sin^3"A")/(4cos^3"A" - 3cos"A")`
= `(3(3/5) - 4(3/5)^3)/(4(4/5)^3 - 3(4/5)`
= `(9/5 - 108/125)/(256/125 - 12/5)`
= `((225 - 108)/125)/((256 - 300)/125)`
= `(117)/(-44)`
R.H.S. = `(3tan"A" - tan^3"A")/(1 - 3tan^2"A")`
= `(3(3/4) - (3/4)^3)/(1 - 3(3/4)^2`
= `(9/4 - 27/64)/(1 - 27/16)`
= `((144 - 27)/64)/((16 - 27)/16)`
= `(117)/(64) xx (16)/(-11)`
= `(117)/(4) xx (1)/(-11)`
= `(-117)/(44)`
⇒ L.H.S. = R.H.S.
APPEARS IN
संबंधित प्रश्न
In tan θ = 1, find the value of 5cot2θ + sin2θ - 1.
In the given figure, ∠Q = 90°, PS is a median om QR from P, and RT divides PQ in the ratio 1 : 2. Find: `("tan" ∠"TSQ")/("tan"∠"PRQ")`
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 3 - 2 cos ∠BAC + 3 cot ∠BCD
If 3cosθ - 4sinθ = 2cosθ + sinθ, find tanθ.
If 4sinθ = `sqrt(13)`, find the value of `(4sinθ - 3cosθ)/(2sinθ + 6cosθ)`
If 5tanθ = 12, find the value of `(2sinθ - 3cosθ)/(4sinθ - 9cosθ)`.
If cosecθ = `1(9)/(20)`, show that `(1 - sinθ + cosθ)/(1 + sinθ + cosθ) = (3)/(7)`
If a cotθ = b, prove that `("a"sinθ - "b"cosθ)/("a"sinθ + "b"cosθ) = ("a"^2 - "b"^2)/("a"^2 + "b"^2)`
If cotθ = `sqrt(7)`, show that `("cosec"^2θ -sec^2θ)/("cosec"^2θ + sec^2θ) = (3)/(4)`
If 3 tanθ = 4, prove that `sqrt(secθ - "cosec"θ)/(sqrt(secθ - "cosec"θ)) = (1)/sqrt(7)`.