Advertisements
Advertisements
प्रश्न
If 12 cotθ = 13, find the value of `(2sinθ cosθ)/(cos^2θ - sin^2θ)`.
उत्तर
cot θ = `(13)/(12)`
⇒ `cosθ /sinθ = (13)/(12)`
⇒ `"Base"/"Hypotenuse" xx "Hypotenuse"/"Perpendicular" = (13)/(12)`
⇒ `"Base"/"Perpendicular" = (13)/(12)`
Hypotenuse
= `sqrt(("Perpendicular")^2 + ("Base")^2`
= `sqrt((12)^2 + (13)^2`
= `sqrt(144 + 169)`
= `sqrt(313)`
`(2sinθ cosθ)/(cos^2θ - sin^2θ)`
= `(2 xx 12/sqrt(313) xx 13/sqrt(313))/((13/sqrt(313))^2 - (12/sqrt(313))^2`
= `(312/313)/(169/313 - 144/313)`
= `(312/313)/(25/313)`
= `(312)/(25)`.
APPEARS IN
संबंधित प्रश्न
In tan θ = 1, find the value of 5cot2θ + sin2θ - 1.
In the given figure, ∠Q = 90°, PS is a median om QR from P, and RT divides PQ in the ratio 1 : 2. Find: `("tan" ∠"PSQ")/("tan"∠"PRQ")`
In the given figure, ∠Q = 90°, PS is a median om QR from P, and RT divides PQ in the ratio 1 : 2. Find: `("tan" ∠"TSQ")/("tan"∠"PRQ")`
In the given figure, AD is perpendicular to BC. Find: 15 tan y
If 4 sinθ = 3 cosθ, find `(6sinθ - 2cosθ )/(6sinθ + 2cosθ )`
If 5tanθ = 12, find the value of `(2sinθ - 3cosθ)/(4sinθ - 9cosθ)`.
If b tanθ = a, find the values of `(cosθ + sinθ)/(cosθ - sinθ)`.
If a cotθ = b, prove that `("a"sinθ - "b"cosθ)/("a"sinθ + "b"cosθ) = ("a"^2 - "b"^2)/("a"^2 + "b"^2)`
If sinθ = `(3)/(4)`, prove that `sqrt(("cosec"^2θ - cot^2θ)/(sec^2θ - 1)) = sqrt(7)/(3)`.
If secA = `(17)/(8)`, verify that `(3 - 4sin^2 "A")/(4 cos^2 "A" - 3)= (3 - tan^2"A")/(1 - 3tan^2"A")`