Advertisements
Advertisements
प्रश्न
If a cotθ = b, prove that `("a"sinθ - "b"cosθ)/("a"sinθ + "b"cosθ) = ("a"^2 - "b"^2)/("a"^2 + "b"^2)`
उत्तर
a cotθ = b
⇒ cotθ = `"b"/"a"`
⇒ tanθ = `(1)/cotθ = "a"/"b"`
To prove: `("a"sinθ - "b"cosθ)/("a"sinθ + "b"cosθ) = ("a"^2 - "b"^2)/("a"^2 + "b"^2)`
Consider `("a"sinθ - "b"cosθ)/("a"sinθ + "b"cosθ)`
Dividing the numerator and denominator by cosθ, we get
`("a"sinθ - "b"cosθ)/("a"sinθ + "b"cosθ)`
= `("a"sinθ/cosθ - "b")/("a"sinθ/cosθ + "b")`
= `("a"tanθ - "b")/("a"tanθ + "b")`
= `("a" xx "a"/"b" - "b")/("a" xx "a"/"b" + "b")`
= `(("a"^2 - "b"^2)/"b"^2)/(("a"^2 + "b"^2)/"b"^2`
= `("a"^2 - "b"^2)/("a"^2 - "b"^2)`.
APPEARS IN
संबंधित प्रश्न
In the given figure, AD is perpendicular to BC. Find: 5 cos x - 12 sin y + tan x
In the given figure, AD is perpendicular to BC. Find:
`(3)/("sin" x) + (4)/("cos" y) - 4 "tan" y`
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 3 - 2 cos ∠BAC + 3 cot ∠BCD
If 24cosθ = 7 sinθ, find sinθ + cosθ.
If 8tanA = 15, find sinA - cosA.
If 3cosθ - 4sinθ = 2cosθ + sinθ, find tanθ.
If 5cosθ = 3, find the value of `(4cosθ - sinθ)/(2cosθ + sinθ)`
If 35 sec θ = 37, find the value of sin θ - sin θ tan θ.
If cosecθ = `1(9)/(20)`, show that `(1 - sinθ + cosθ)/(1 + sinθ + cosθ) = (3)/(7)`
If cotθ = `sqrt(7)`, show that `("cosec"^2θ -sec^2θ)/("cosec"^2θ + sec^2θ) = (3)/(4)`