हिंदी

If a cotθ = b, prove that a sin θ − b cos θ a sin θ + b cos θ = a 2 − b 2 a 2 + b 2 - Mathematics

Advertisements
Advertisements

प्रश्न

If a cotθ = b, prove that `("a"sinθ - "b"cosθ)/("a"sinθ + "b"cosθ) = ("a"^2 - "b"^2)/("a"^2 + "b"^2)`

योग

उत्तर

a cotθ  = b

⇒ cotθ = `"b"/"a"`

⇒ tanθ = `(1)/cotθ = "a"/"b"`

To prove: `("a"sinθ - "b"cosθ)/("a"sinθ + "b"cosθ) = ("a"^2 - "b"^2)/("a"^2 + "b"^2)`

Consider `("a"sinθ - "b"cosθ)/("a"sinθ + "b"cosθ)`
Dividing the numerator and denominator by cosθ, we get

`("a"sinθ - "b"cosθ)/("a"sinθ + "b"cosθ)`

= `("a"sinθ/cosθ - "b")/("a"sinθ/cosθ + "b")`

= `("a"tanθ - "b")/("a"tanθ + "b")`

= `("a" xx "a"/"b" - "b")/("a" xx "a"/"b" + "b")`

= `(("a"^2 - "b"^2)/"b"^2)/(("a"^2 + "b"^2)/"b"^2`

= `("a"^2 - "b"^2)/("a"^2 - "b"^2)`.

shaalaa.com
Reciprocal Relations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 26: Trigonometrical Ratios - Exercise 26.1

APPEARS IN

फ्रैंक Mathematics [English] Class 9 ICSE
अध्याय 26 Trigonometrical Ratios
Exercise 26.1 | Q 33
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×