Advertisements
Advertisements
Question
If a cotθ = b, prove that `("a"sinθ - "b"cosθ)/("a"sinθ + "b"cosθ) = ("a"^2 - "b"^2)/("a"^2 + "b"^2)`
Solution
a cotθ = b
⇒ cotθ = `"b"/"a"`
⇒ tanθ = `(1)/cotθ = "a"/"b"`
To prove: `("a"sinθ - "b"cosθ)/("a"sinθ + "b"cosθ) = ("a"^2 - "b"^2)/("a"^2 + "b"^2)`
Consider `("a"sinθ - "b"cosθ)/("a"sinθ + "b"cosθ)`
Dividing the numerator and denominator by cosθ, we get
`("a"sinθ - "b"cosθ)/("a"sinθ + "b"cosθ)`
= `("a"sinθ/cosθ - "b")/("a"sinθ/cosθ + "b")`
= `("a"tanθ - "b")/("a"tanθ + "b")`
= `("a" xx "a"/"b" - "b")/("a" xx "a"/"b" + "b")`
= `(("a"^2 - "b"^2)/"b"^2)/(("a"^2 + "b"^2)/"b"^2`
= `("a"^2 - "b"^2)/("a"^2 - "b"^2)`.
APPEARS IN
RELATED QUESTIONS
In the given figure, AD is perpendicular to BC. Find:
`(3)/("sin" x) + (4)/("cos" y) - 4 "tan" y`
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 3 - 2 cos ∠BAC + 3 cot ∠BCD
If 24cosθ = 7 sinθ, find sinθ + cosθ.
If 4 sinθ = 3 cosθ, find `(6sinθ - 2cosθ )/(6sinθ + 2cosθ )`
If 8tanA = 15, find sinA - cosA.
If 4sinθ = `sqrt(13)`, find the value of `(4sinθ - 3cosθ)/(2sinθ + 6cosθ)`
If cotθ = `(1)/sqrt(3)`, show that `(1 - cos^2θ)/(2 - sin^2θ) = (3)/(5)`
If cosecθ = `1(9)/(20)`, show that `(1 - sinθ + cosθ)/(1 + sinθ + cosθ) = (3)/(7)`
If 12 cotθ = 13, find the value of `(2sinθ cosθ)/(cos^2θ - sin^2θ)`.
If 3 tanθ = 4, prove that `sqrt(secθ - "cosec"θ)/(sqrt(secθ - "cosec"θ)) = (1)/sqrt(7)`.