Advertisements
Advertisements
Question
If 4sinθ = `sqrt(13)`, find the value of `(4sinθ - 3cosθ)/(2sinθ + 6cosθ)`
Solution
Consider ΔABC, where ∠B = 90°
⇒ 4sinθ = `sqrt(13)`
⇒ 4sinθ = `sqrt(13)/(4)`
⇒ sinθ = `"Perpendicular"/"Hypotenuse" = "BC"/"AC" = sqrt(13)/(4)`
By Pythagoras theorem,
AC2 = AB2 + BC2
⇒ AB2
= AC2 - BC2
= `4^2 - (sqrt(13))^2`
= 16 - 13
= 3
⇒ AB = `sqrt(3)`
Now,
cosθ = `"Base"/"Hypotenuse" = "AB"/"AC" = sqrt(3)/(4)`
`(4sinθ - 3cosθ)/(2sinθ + 6cosθ)`
= `(4 xx sqrt(3)/(4) - 3 xx sqrt(3)/4)/(2 xx sqrt(13)/4 + 6 cc sqrt(3)/4)`
= `((4sqrt(13) - 3sqrt(13))/(4))/((2sqrt(13) + 6sqrt(13))/(4)`
= `(4sqrt(13) - 3sqrt(13))/(2sqrt(13) + 6sqrt(13)`
= `sqrt(13)/(8sqrt(13)`
= `(1)/(8)`.
APPEARS IN
RELATED QUESTIONS
In the given figure, AD is perpendicular to BC. Find: 5 cos x - 12 sin y + tan x
If 4 sinθ = 3 cosθ, find tan2θ + cot2θ
If 4 sinθ = 3 cosθ, find `(6sinθ - 2cosθ )/(6sinθ + 2cosθ )`
If 8tanA = 15, find sinA - cosA.
If 35 sec θ = 37, find the value of sin θ - sin θ tan θ.
If cotθ = `(1)/sqrt(3)`, show that `(1 - cos^2θ)/(2 - sin^2θ) = (3)/(5)`
If b tanθ = a, find the values of `(cosθ + sinθ)/(cosθ - sinθ)`.
If a cotθ = b, prove that `("a"sinθ - "b"cosθ)/("a"sinθ + "b"cosθ) = ("a"^2 - "b"^2)/("a"^2 + "b"^2)`
If 12 cotθ = 13, find the value of `(2sinθ cosθ)/(cos^2θ - sin^2θ)`.
If secA = `(17)/(8)`, verify that `(3 - 4sin^2 "A")/(4 cos^2 "A" - 3)= (3 - tan^2"A")/(1 - 3tan^2"A")`