Advertisements
Advertisements
Question
If 35 sec θ = 37, find the value of sin θ - sin θ tan θ.
Solution
Consider ΔABC, where ∠B = 90°
⇒ 35secθ = 37
⇒ secθ = `(37)/(35)`
⇒ secθ = `"Hypotenuse"/"Base" = "AC"/"BC" = (37)/(35)`
By Pythagoras theorem,
AB2
= AC2 - BC2
= 372 - 352
= (37 + 35)(37 - 35)
= 72 x 2
= 144
⇒ AB = 12
Now,
sinθ = `"Perpendicular"/"Hypotenuse" = "AB"/"AC" = (12)/(37)`
tanθ = `"Perpendicular"/"Hypotenuse" = "AB"/"BC" = (12)/(35)`
∴ sinθ - sinθ tanθ
= `(12)/(37) - (12)/(37) xx (12)/(35)`
= `(12)/(37)(1 - 12/35)`
= `(12)/(37)((35 - 12)/35)`
= `(12)/(37) xx (23)/(35)`
= `(276)/(1295)`.
APPEARS IN
RELATED QUESTIONS
In the given figure, ∠Q = 90°, PS is a median om QR from P, and RT divides PQ in the ratio 1 : 2. Find: `("tan" ∠"PSQ")/("tan"∠"PRQ")`
In the given figure, AD is perpendicular to BC. Find: 5 cos x
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 3 - 2 cos ∠BAC + 3 cot ∠BCD
If 8tanA = 15, find sinA - cosA.
If cosecθ = `1(9)/(20)`, show that `(1 - sinθ + cosθ)/(1 + sinθ + cosθ) = (3)/(7)`
If b tanθ = a, find the values of `(cosθ + sinθ)/(cosθ - sinθ)`.
If 12cosecθ = 13, find the value of `(sin^2θ - cos^2θ) /(2sinθ cosθ) xx (1)/tan^2θ`.
If 12 cotθ = 13, find the value of `(2sinθ cosθ)/(cos^2θ - sin^2θ)`.
If secA = `(17)/(8)`, verify that `(3 - 4sin^2 "A")/(4 cos^2 "A" - 3)= (3 - tan^2"A")/(1 - 3tan^2"A")`
If 3 tanθ = 4, prove that `sqrt(secθ - "cosec"θ)/(sqrt(secθ - "cosec"θ)) = (1)/sqrt(7)`.