Advertisements
Advertisements
प्रश्न
If 35 sec θ = 37, find the value of sin θ - sin θ tan θ.
उत्तर
Consider ΔABC, where ∠B = 90°
⇒ 35secθ = 37
⇒ secθ = `(37)/(35)`
⇒ secθ = `"Hypotenuse"/"Base" = "AC"/"BC" = (37)/(35)`
By Pythagoras theorem,
AB2
= AC2 - BC2
= 372 - 352
= (37 + 35)(37 - 35)
= 72 x 2
= 144
⇒ AB = 12
Now,
sinθ = `"Perpendicular"/"Hypotenuse" = "AB"/"AC" = (12)/(37)`
tanθ = `"Perpendicular"/"Hypotenuse" = "AB"/"BC" = (12)/(35)`
∴ sinθ - sinθ tanθ
= `(12)/(37) - (12)/(37) xx (12)/(35)`
= `(12)/(37)(1 - 12/35)`
= `(12)/(37)((35 - 12)/35)`
= `(12)/(37) xx (23)/(35)`
= `(276)/(1295)`.
APPEARS IN
संबंधित प्रश्न
In the given figure, AD is perpendicular to BC. Find: 15 tan y
In the given figure, AD is perpendicular to BC. Find: 5 cos x - 12 sin y + tan x
In the given figure, AD is perpendicular to BC. Find:
`(3)/("sin" x) + (4)/("cos" y) - 4 "tan" y`
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 2 tan ∠BAC - sin ∠BCD
If 24cosθ = 7 sinθ, find sinθ + cosθ.
If a cotθ = b, prove that `("a"sinθ - "b"cosθ)/("a"sinθ + "b"cosθ) = ("a"^2 - "b"^2)/("a"^2 + "b"^2)`
If 12cosecθ = 13, find the value of `(sin^2θ - cos^2θ) /(2sinθ cosθ) xx (1)/tan^2θ`.
If 12 cotθ = 13, find the value of `(2sinθ cosθ)/(cos^2θ - sin^2θ)`.
If sinθ = `(3)/(4)`, prove that `sqrt(("cosec"^2θ - cot^2θ)/(sec^2θ - 1)) = sqrt(7)/(3)`.
If 3 tanθ = 4, prove that `sqrt(secθ - "cosec"θ)/(sqrt(secθ - "cosec"θ)) = (1)/sqrt(7)`.