Advertisements
Advertisements
प्रश्न
In the given figure, AD is perpendicular to BC. Find:
`(3)/("sin" x) + (4)/("cos" y) - 4 "tan" y`
उत्तर
ΔADB is a right-angled triangle.
∴ AB2
= AB2 + BD2
= 122 + 162
= 144 + 256
= 400
⇒ AB = 20cm
ΔADC is a right-angled triangle.
∴ AC2
= AD2 + DC2
= 122 + 92
= 144 + 81
= 225
⇒ AC = 15cm
`(3)/("sin" x) + (4)/("cos" y) - 4 "tan" y`
= `(3)/("AD"/"AB") + (4)/("AD"/"AC") - 4 xx "CD"/"AD"`
= `(3)/(12/20) + (4)/(12/15) - 4 xx (9)/(12)`
= `(60)/(12) + (60)/(12) - 3`
= 5 + 5 - 3
= 7.
APPEARS IN
संबंधित प्रश्न
In the given figure, ∠Q = 90°, PS is a median om QR from P, and RT divides PQ in the ratio 1 : 2. Find: `("tan" ∠"PSQ")/("tan"∠"PRQ")`
In the given figure, AD is perpendicular to BC. Find: 5 cos x
In the given figure, AD is perpendicular to BC. Find: 15 tan y
In the given figure, AD is perpendicular to BC. Find: 5 cos x - 12 sin y + tan x
If 8tanA = 15, find sinA - cosA.
If 5cosθ = 3, find the value of `(4cosθ - sinθ)/(2cosθ + sinθ)`
If 35 sec θ = 37, find the value of sin θ - sin θ tan θ.
If cotθ = `sqrt(7)`, show that `("cosec"^2θ -sec^2θ)/("cosec"^2θ + sec^2θ) = (3)/(4)`
If sinθ = `(3)/(4)`, prove that `sqrt(("cosec"^2θ - cot^2θ)/(sec^2θ - 1)) = sqrt(7)/(3)`.
If 3 tanθ = 4, prove that `sqrt(secθ - "cosec"θ)/(sqrt(secθ - "cosec"θ)) = (1)/sqrt(7)`.