Advertisements
Advertisements
प्रश्न
In the given figure, ∠Q = 90°, PS is a median om QR from P, and RT divides PQ in the ratio 1 : 2. Find: `("tan" ∠"PSQ")/("tan"∠"PRQ")`
उत्तर
As PS is the median on QR from P.
∴ QS = SR
⇒ QR = 2QS
and RT divides PQ in the ratio 1 : 2
∴ QT = x and PT = 2x
⇒ PQ = 3x
`("tan" ∠"PSQ")/("tan"∠"PRQ")`
= `("PQ"/"QS")/("PQ"/"QR")`
= `"PQ"/"QS" xx "QR"/"PQ"`
= `(2"QS")/("QS")`
= 2.
APPEARS IN
संबंधित प्रश्न
In tan θ = 1, find the value of 5cot2θ + sin2θ - 1.
In the given figure, ∠Q = 90°, PS is a median om QR from P, and RT divides PQ in the ratio 1 : 2. Find: `("tan" ∠"TSQ")/("tan"∠"PRQ")`
If 4 sinθ = 3 cosθ, find tan2θ + cot2θ
If 8tanA = 15, find sinA - cosA.
If 4sinθ = `sqrt(13)`, find the value of 4sin3θ - 3sinθ
If 35 sec θ = 37, find the value of sin θ - sin θ tan θ.
If cosecθ = `1(9)/(20)`, show that `(1 - sinθ + cosθ)/(1 + sinθ + cosθ) = (3)/(7)`
If 12cosecθ = 13, find the value of `(sin^2θ - cos^2θ) /(2sinθ cosθ) xx (1)/tan^2θ`.
If 12 cotθ = 13, find the value of `(2sinθ cosθ)/(cos^2θ - sin^2θ)`.
If sinθ = `(3)/(4)`, prove that `sqrt(("cosec"^2θ - cot^2θ)/(sec^2θ - 1)) = sqrt(7)/(3)`.