Advertisements
Advertisements
प्रश्न
In the given figure, ∠Q = 90°, PS is a median om QR from P, and RT divides PQ in the ratio 1 : 2. Find: `("tan" ∠"TSQ")/("tan"∠"PRQ")`
उत्तर
As PS is the median on QR from P.
∴ QS = SR
⇒ QR = 2QS
and RT divides PQ in the ratio 1 : 2
∴ QT = x and PT = 2x
⇒ PQ = 3x
`("tan" ∠"TSQ")/("tan"∠"PRQ")`
= `("QT"/"QS")/("PQ"/"QR")`
= `"QT"/"QS" xx "QR"/"PQ"`
= `x/"QS" xx (2"QS")/(3x)`
= `(2)/(3)`.
APPEARS IN
संबंधित प्रश्न
In the given figure, AD is perpendicular to BC. Find: 5 cos x
In the given figure, AD is perpendicular to BC. Find: 5 cos x - 12 sin y + tan x
If 4 sinθ = 3 cosθ, find tan2θ + cot2θ
If 4 sinθ = 3 cosθ, find `(6sinθ - 2cosθ )/(6sinθ + 2cosθ )`
If 5cosθ = 3, find the value of `(4cosθ - sinθ)/(2cosθ + sinθ)`
If 4sinθ = `sqrt(13)`, find the value of 4sin3θ - 3sinθ
If b tanθ = a, find the values of `(cosθ + sinθ)/(cosθ - sinθ)`.
If cotθ = `sqrt(7)`, show that `("cosec"^2θ -sec^2θ)/("cosec"^2θ + sec^2θ) = (3)/(4)`
If secA = `(5)/(4)`, cerify that `(3sin"A" - 4sin^3"A")/(4cos^3"A" - 3cos"A") = (3tan"A" - tan^3"A")/(1 - 3tan^2"A")`.
If tan θ = `"m"/"n"`, show that `"m sin θ - n cos θ"/"m sinθ + n cos θ" = ("m"^2 - "n"^2)/("m"^2 + "n"^2)`