Advertisements
Advertisements
प्रश्न
If 4sinθ = `sqrt(13)`, find the value of 4sin3θ - 3sinθ
उत्तर
Consider ΔABC, where ∠B = 90°
⇒ 4sinθ = `sqrt(13)`
⇒ 4sinθ = `sqrt(13)/(4)`
⇒ sinθ = `"Perpendicular"/"Hypotenuse" = "BC"/"AC" = sqrt(13)/(4)`
By Pythagoras theorem,
AC2 = AB2 + BC2
⇒ AB2
= AC2 - BC2
= `4^2 - (sqrt(13))^2`
= 16 - 13
= 3
⇒ AB = `sqrt(3)`
Now,
cosθ = `"Base"/"Hypotenuse" = "AB"/"AC" = sqrt(3)/(4)`
4sin3θ - 3sinθ
= `4(sqrt(13)/4)^3 - 3 xx sqrt(13)/(4)`
= `(13sqrt(13))/(16) - (3sqrt(13))/(4)`
= `(13sqrt(13) - 12sqrt(13))/(16)`
= `sqrt(13)/(16)`.
APPEARS IN
संबंधित प्रश्न
In the given figure, ∠Q = 90°, PS is a median om QR from P, and RT divides PQ in the ratio 1 : 2. Find: `("tan" ∠"PSQ")/("tan"∠"PRQ")`
In the given figure, ∠Q = 90°, PS is a median om QR from P, and RT divides PQ in the ratio 1 : 2. Find: `("tan" ∠"TSQ")/("tan"∠"PRQ")`
In the given figure, AD is perpendicular to BC. Find:
`(3)/("sin" x) + (4)/("cos" y) - 4 "tan" y`
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 3 - 2 cos ∠BAC + 3 cot ∠BCD
If 8tanA = 15, find sinA - cosA.
If 5tanθ = 12, find the value of `(2sinθ - 3cosθ)/(4sinθ - 9cosθ)`.
If 12 cotθ = 13, find the value of `(2sinθ cosθ)/(cos^2θ - sin^2θ)`.
If sinθ = `(3)/(4)`, prove that `sqrt(("cosec"^2θ - cot^2θ)/(sec^2θ - 1)) = sqrt(7)/(3)`.
If 3 tanθ = 4, prove that `sqrt(secθ - "cosec"θ)/(sqrt(secθ - "cosec"θ)) = (1)/sqrt(7)`.
If tan θ = `"m"/"n"`, show that `"m sin θ - n cos θ"/"m sinθ + n cos θ" = ("m"^2 - "n"^2)/("m"^2 + "n"^2)`