Advertisements
Advertisements
प्रश्न
If 4sinθ = `sqrt(13)`, find the value of `(4sinθ - 3cosθ)/(2sinθ + 6cosθ)`
उत्तर
Consider ΔABC, where ∠B = 90°
⇒ 4sinθ = `sqrt(13)`
⇒ 4sinθ = `sqrt(13)/(4)`
⇒ sinθ = `"Perpendicular"/"Hypotenuse" = "BC"/"AC" = sqrt(13)/(4)`
By Pythagoras theorem,
AC2 = AB2 + BC2
⇒ AB2
= AC2 - BC2
= `4^2 - (sqrt(13))^2`
= 16 - 13
= 3
⇒ AB = `sqrt(3)`
Now,
cosθ = `"Base"/"Hypotenuse" = "AB"/"AC" = sqrt(3)/(4)`
`(4sinθ - 3cosθ)/(2sinθ + 6cosθ)`
= `(4 xx sqrt(3)/(4) - 3 xx sqrt(3)/4)/(2 xx sqrt(13)/4 + 6 cc sqrt(3)/4)`
= `((4sqrt(13) - 3sqrt(13))/(4))/((2sqrt(13) + 6sqrt(13))/(4)`
= `(4sqrt(13) - 3sqrt(13))/(2sqrt(13) + 6sqrt(13)`
= `sqrt(13)/(8sqrt(13)`
= `(1)/(8)`.
APPEARS IN
संबंधित प्रश्न
In the given figure, ∠Q = 90°, PS is a median om QR from P, and RT divides PQ in the ratio 1 : 2. Find: `("tan" ∠"TSQ")/("tan"∠"PRQ")`
In the given figure, AD is perpendicular to BC. Find: 5 cos x
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 2 tan ∠BAC - sin ∠BCD
If 24cosθ = 7 sinθ, find sinθ + cosθ.
If 5tanθ = 12, find the value of `(2sinθ - 3cosθ)/(4sinθ - 9cosθ)`.
If b tanθ = a, find the values of `(cosθ + sinθ)/(cosθ - sinθ)`.
If a cotθ = b, prove that `("a"sinθ - "b"cosθ)/("a"sinθ + "b"cosθ) = ("a"^2 - "b"^2)/("a"^2 + "b"^2)`
If 12 cotθ = 13, find the value of `(2sinθ cosθ)/(cos^2θ - sin^2θ)`.
If secA = `(5)/(4)`, cerify that `(3sin"A" - 4sin^3"A")/(4cos^3"A" - 3cos"A") = (3tan"A" - tan^3"A")/(1 - 3tan^2"A")`.
If 3 tanθ = 4, prove that `sqrt(secθ - "cosec"θ)/(sqrt(secθ - "cosec"θ)) = (1)/sqrt(7)`.