Advertisements
Advertisements
प्रश्न
If a cotθ = b, prove that `("a"sinθ - "b"cosθ)/("a"sinθ + "b"cosθ) = ("a"^2 - "b"^2)/("a"^2 + "b"^2)`
उत्तर
a cotθ = b
⇒ cotθ = `"b"/"a"`
⇒ tanθ = `(1)/cotθ = "a"/"b"`
To prove: `("a"sinθ - "b"cosθ)/("a"sinθ + "b"cosθ) = ("a"^2 - "b"^2)/("a"^2 + "b"^2)`
Consider `("a"sinθ - "b"cosθ)/("a"sinθ + "b"cosθ)`
Dividing the numerator and denominator by cosθ, we get
`("a"sinθ - "b"cosθ)/("a"sinθ + "b"cosθ)`
= `("a"sinθ/cosθ - "b")/("a"sinθ/cosθ + "b")`
= `("a"tanθ - "b")/("a"tanθ + "b")`
= `("a" xx "a"/"b" - "b")/("a" xx "a"/"b" + "b")`
= `(("a"^2 - "b"^2)/"b"^2)/(("a"^2 + "b"^2)/"b"^2`
= `("a"^2 - "b"^2)/("a"^2 - "b"^2)`.
APPEARS IN
संबंधित प्रश्न
In the given figure, ∠Q = 90°, PS is a median om QR from P, and RT divides PQ in the ratio 1 : 2. Find: `("tan" ∠"PSQ")/("tan"∠"PRQ")`
If 24cosθ = 7 sinθ, find sinθ + cosθ.
If 4 sinθ = 3 cosθ, find tan2θ + cot2θ
If 4 sinθ = 3 cosθ, find `(6sinθ - 2cosθ )/(6sinθ + 2cosθ )`
If 4sinθ = `sqrt(13)`, find the value of 4sin3θ - 3sinθ
If 5tanθ = 12, find the value of `(2sinθ - 3cosθ)/(4sinθ - 9cosθ)`.
If cotθ = `(1)/sqrt(3)`, show that `(1 - cos^2θ)/(2 - sin^2θ) = (3)/(5)`
If cotθ = `sqrt(7)`, show that `("cosec"^2θ -sec^2θ)/("cosec"^2θ + sec^2θ) = (3)/(4)`
If 12 cotθ = 13, find the value of `(2sinθ cosθ)/(cos^2θ - sin^2θ)`.
If 3 tanθ = 4, prove that `sqrt(secθ - "cosec"θ)/(sqrt(secθ - "cosec"θ)) = (1)/sqrt(7)`.