Advertisements
Advertisements
प्रश्न
If cotθ = `(1)/sqrt(3)`, show that `(1 - cos^2θ)/(2 - sin^2θ) = (3)/(5)`
उत्तर
cotθ = `(1)/sqrt(3)`
⇒ cotθ = `(1)/"tanθ" = (1)/sqrt(3) = "Base"/"Perpendicular"`
Hypotenuse
= `sqrt(("Perpendicular")^2 + ("Base")^2`
= `sqrt((sqrt(3))^2 + 1`
= `sqrt(3 + 1)`
= 2
cosθ = `"Base"/"Hypotenuse" = (1)/(2)`,
sinθ = `"Perpendicular"/"Hypotenuse" = sqrt(3)/(2)`
To show: `(1 - cos^2θ)/(2 - sin^2θ) = (3)/(5)`
`(1 - cos^2θ)/(2 - sin^2θ)`
= `(1 - (cosθ)^2)/(2 - (sinθ)^2)`
= `(1 - 1/4)/(2 - 3/4)`
= `(3/4)/(5/4)`
= `(3)/(5)`.
APPEARS IN
संबंधित प्रश्न
In tan θ = 1, find the value of 5cot2θ + sin2θ - 1.
In the given figure, AD is perpendicular to BC. Find: 15 tan y
In the given figure, AD is perpendicular to BC. Find: 5 cos x - 12 sin y + tan x
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 2 tan ∠BAC - sin ∠BCD
If 4 sinθ = 3 cosθ, find `(6sinθ - 2cosθ )/(6sinθ + 2cosθ )`
If 8tanA = 15, find sinA - cosA.
If 5cosθ = 3, find the value of `(4cosθ - sinθ)/(2cosθ + sinθ)`
If cotθ = `sqrt(7)`, show that `("cosec"^2θ -sec^2θ)/("cosec"^2θ + sec^2θ) = (3)/(4)`
If 12cosecθ = 13, find the value of `(sin^2θ - cos^2θ) /(2sinθ cosθ) xx (1)/tan^2θ`.
If secA = `(17)/(8)`, verify that `(3 - 4sin^2 "A")/(4 cos^2 "A" - 3)= (3 - tan^2"A")/(1 - 3tan^2"A")`