Advertisements
Advertisements
प्रश्न
If cotθ = `sqrt(7)`, show that `("cosec"^2θ -sec^2θ)/("cosec"^2θ + sec^2θ) = (3)/(4)`
उत्तर
cotθ = `sqrt(7)`
⇒ `cosθ/sinθ = sqrt(7)`
⇒ `"Base"/"Hypotenuse" xx "Hypotenuse"/"Perpendicular" = sqrt(7)/(1)`
⇒ `"Base"/"Perpendicular" = sqrt(7)/(1)`
Hypotenuse
= `sqrt(("Perpendicular")^2 + ("Base")^2`
= `sqrt(1 + 7)`
= `2sqrt(2)`
To show: `("cosec"^2θ -sec^2θ)/("cosec"^2θ + sec^2θ) = (3)/(4)`
`("cosec"^2θ -sec^2θ)/("cosec"^2θ + sec^2θ)`
= `(("Hypotenuse"/"Perpendicular")^2 - ("Hypotenuse"/"Base")^2)/(("Hypotenuse"/"Perpendicular")^2 + ("Hypotenuse"/"Base")^2)`
= `((2sqrt(2)/1)^2 - (2sqrt(2)/sqrt(7))^2)/(((2sqrt(2))/1)^2 + (2sqrt(2)/sqrt(7))^2`
= `(8/1 - 8/7)/(8/1 + 8/7)`
= `((56 - 8)/7)/((56 + 8)/7)`
= `(48)/(64)`
= `(3)/(4)`.
APPEARS IN
संबंधित प्रश्न
In the given figure, ∠Q = 90°, PS is a median om QR from P, and RT divides PQ in the ratio 1 : 2. Find: `("tan" ∠"PSQ")/("tan"∠"PRQ")`
In the given figure, AD is perpendicular to BC. Find: 5 cos x
If 8tanA = 15, find sinA - cosA.
If 4sinθ = `sqrt(13)`, find the value of `(4sinθ - 3cosθ)/(2sinθ + 6cosθ)`
If 4sinθ = `sqrt(13)`, find the value of 4sin3θ - 3sinθ
If 35 sec θ = 37, find the value of sin θ - sin θ tan θ.
If cosecθ = `1(9)/(20)`, show that `(1 - sinθ + cosθ)/(1 + sinθ + cosθ) = (3)/(7)`
If b tanθ = a, find the values of `(cosθ + sinθ)/(cosθ - sinθ)`.
If 12cosecθ = 13, find the value of `(sin^2θ - cos^2θ) /(2sinθ cosθ) xx (1)/tan^2θ`.
If sinθ = `(3)/(4)`, prove that `sqrt(("cosec"^2θ - cot^2θ)/(sec^2θ - 1)) = sqrt(7)/(3)`.