Advertisements
Advertisements
Question
If cotθ = `sqrt(7)`, show that `("cosec"^2θ -sec^2θ)/("cosec"^2θ + sec^2θ) = (3)/(4)`
Solution
cotθ = `sqrt(7)`
⇒ `cosθ/sinθ = sqrt(7)`
⇒ `"Base"/"Hypotenuse" xx "Hypotenuse"/"Perpendicular" = sqrt(7)/(1)`
⇒ `"Base"/"Perpendicular" = sqrt(7)/(1)`
Hypotenuse
= `sqrt(("Perpendicular")^2 + ("Base")^2`
= `sqrt(1 + 7)`
= `2sqrt(2)`
To show: `("cosec"^2θ -sec^2θ)/("cosec"^2θ + sec^2θ) = (3)/(4)`
`("cosec"^2θ -sec^2θ)/("cosec"^2θ + sec^2θ)`
= `(("Hypotenuse"/"Perpendicular")^2 - ("Hypotenuse"/"Base")^2)/(("Hypotenuse"/"Perpendicular")^2 + ("Hypotenuse"/"Base")^2)`
= `((2sqrt(2)/1)^2 - (2sqrt(2)/sqrt(7))^2)/(((2sqrt(2))/1)^2 + (2sqrt(2)/sqrt(7))^2`
= `(8/1 - 8/7)/(8/1 + 8/7)`
= `((56 - 8)/7)/((56 + 8)/7)`
= `(48)/(64)`
= `(3)/(4)`.
APPEARS IN
RELATED QUESTIONS
In the given figure, AD is perpendicular to BC. Find: 5 cos x
In the given figure, AD is perpendicular to BC. Find: 15 tan y
If 4 sinθ = 3 cosθ, find `(6sinθ - 2cosθ )/(6sinθ + 2cosθ )`
If 5cosθ = 3, find the value of `(4cosθ - sinθ)/(2cosθ + sinθ)`
If 5tanθ = 12, find the value of `(2sinθ - 3cosθ)/(4sinθ - 9cosθ)`.
If cotθ = `(1)/sqrt(3)`, show that `(1 - cos^2θ)/(2 - sin^2θ) = (3)/(5)`
If a cotθ = b, prove that `("a"sinθ - "b"cosθ)/("a"sinθ + "b"cosθ) = ("a"^2 - "b"^2)/("a"^2 + "b"^2)`
If 12 cotθ = 13, find the value of `(2sinθ cosθ)/(cos^2θ - sin^2θ)`.
If secA = `(5)/(4)`, cerify that `(3sin"A" - 4sin^3"A")/(4cos^3"A" - 3cos"A") = (3tan"A" - tan^3"A")/(1 - 3tan^2"A")`.
If secA = `(17)/(8)`, verify that `(3 - 4sin^2 "A")/(4 cos^2 "A" - 3)= (3 - tan^2"A")/(1 - 3tan^2"A")`