Advertisements
Advertisements
Question
In the given figure, AD is perpendicular to BC. Find: 5 cos x
Solution
ΔADB is a right-angled triangle.
∴ AB2
= AB2 + BD2
= 122 + 162
= 144 + 256
= 400
⇒ AB = 20cm
ΔADC is a right-angled triangle.
∴ AC2
= AD2 + DC2
= 122 + 92
= 144 + 81
= 225
⇒ AC = 15cm
5 cos x
= `5 xx "BD"/"AB"`
= `5 xx (16)/(20)`
= 4.
APPEARS IN
RELATED QUESTIONS
In the given figure, AD is perpendicular to BC. Find: 5 cos x - 12 sin y + tan x
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 2 tan ∠BAC - sin ∠BCD
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 3 - 2 cos ∠BAC + 3 cot ∠BCD
If 24cosθ = 7 sinθ, find sinθ + cosθ.
If 4 sinθ = 3 cosθ, find tan2θ + cot2θ
If 8tanA = 15, find sinA - cosA.
If 3cosθ - 4sinθ = 2cosθ + sinθ, find tanθ.
If 5cosθ = 3, find the value of `(4cosθ - sinθ)/(2cosθ + sinθ)`
If 5tanθ = 12, find the value of `(2sinθ - 3cosθ)/(4sinθ - 9cosθ)`.
If b tanθ = a, find the values of `(cosθ + sinθ)/(cosθ - sinθ)`.