Advertisements
Advertisements
Question
If 24cosθ = 7 sinθ, find sinθ + cosθ.
Solution
24cosθ = 7sinθ
⇒ `("sin" θ)/("cos"θ) = (24)/(7)`
⇒ tanθ = `(24)/(7) = "Perpendicular"/"Base"`
Hypotenuse
= `sqrt(("Perpendicular")^2 + ("Base")^2`
= `sqrt((24)^2 + (7)^2`
= `sqrt(576 + 49)`
= `sqrt(625)`
= 25
sinθ + cosθ
= `"Perpendicular"/"Hypotenuse" + "Base"/"Hypotenuse"`
= `(24)/(25) + (7)/(25)`
= `(24 + 7)/(25)`
= `(31)/(25)`.
APPEARS IN
RELATED QUESTIONS
In tan θ = 1, find the value of 5cot2θ + sin2θ - 1.
In the given figure, ∠Q = 90°, PS is a median om QR from P, and RT divides PQ in the ratio 1 : 2. Find: `("tan" ∠"PSQ")/("tan"∠"PRQ")`
In the given figure, ∠Q = 90°, PS is a median om QR from P, and RT divides PQ in the ratio 1 : 2. Find: `("tan" ∠"TSQ")/("tan"∠"PRQ")`
In the given figure, AD is perpendicular to BC. Find: 5 cos x
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 2 tan ∠BAC - sin ∠BCD
If 8tanA = 15, find sinA - cosA.
If 5cosθ = 3, find the value of `(4cosθ - sinθ)/(2cosθ + sinθ)`
If b tanθ = a, find the values of `(cosθ + sinθ)/(cosθ - sinθ)`.
If secA = `(5)/(4)`, cerify that `(3sin"A" - 4sin^3"A")/(4cos^3"A" - 3cos"A") = (3tan"A" - tan^3"A")/(1 - 3tan^2"A")`.
If tan θ = `"m"/"n"`, show that `"m sin θ - n cos θ"/"m sinθ + n cos θ" = ("m"^2 - "n"^2)/("m"^2 + "n"^2)`