Advertisements
Advertisements
Question
In tan θ = 1, find the value of 5cot2θ + sin2θ - 1.
Solution
Consider ΔABC, where ∠A = 90°
tan θ = `"Perpendicular"/"Basse" = "AB"/"AC" = 1 = (1)/(1)`
By Pythagoras theorem,
BC2
= AB2 + AC2
= 12 + 12
= 2
⇒ BC = `sqrt(2)`
Now,
cot θ = `(1)/"tan θ"` = 1
sin θ = `"AB"/"BC" = (1)/sqrt(2)`
∴ 5cot2θ + sin2θ - 1
= `5 xx (1)^2 + (1/sqrt(2))^2 - 1`
= `5 + (1)/(2) - 1`
= `4 + (1)/(2)`
= `(9)/(2)`.
APPEARS IN
RELATED QUESTIONS
In the given figure, AD is perpendicular to BC. Find: 5 cos x - 12 sin y + tan x
If 4 sinθ = 3 cosθ, find tan2θ + cot2θ
If 5cosθ = 3, find the value of `(4cosθ - sinθ)/(2cosθ + sinθ)`
If 5tanθ = 12, find the value of `(2sinθ - 3cosθ)/(4sinθ - 9cosθ)`.
If cotθ = `(1)/sqrt(3)`, show that `(1 - cos^2θ)/(2 - sin^2θ) = (3)/(5)`
If b tanθ = a, find the values of `(cosθ + sinθ)/(cosθ - sinθ)`.
If secA = `(5)/(4)`, cerify that `(3sin"A" - 4sin^3"A")/(4cos^3"A" - 3cos"A") = (3tan"A" - tan^3"A")/(1 - 3tan^2"A")`.
If secA = `(17)/(8)`, verify that `(3 - 4sin^2 "A")/(4 cos^2 "A" - 3)= (3 - tan^2"A")/(1 - 3tan^2"A")`
If 3 tanθ = 4, prove that `sqrt(secθ - "cosec"θ)/(sqrt(secθ - "cosec"θ)) = (1)/sqrt(7)`.
If tan θ = `"m"/"n"`, show that `"m sin θ - n cos θ"/"m sinθ + n cos θ" = ("m"^2 - "n"^2)/("m"^2 + "n"^2)`