Advertisements
Advertisements
प्रश्न
In tan θ = 1, find the value of 5cot2θ + sin2θ - 1.
उत्तर
Consider ΔABC, where ∠A = 90°
tan θ = `"Perpendicular"/"Basse" = "AB"/"AC" = 1 = (1)/(1)`
By Pythagoras theorem,
BC2
= AB2 + AC2
= 12 + 12
= 2
⇒ BC = `sqrt(2)`
Now,
cot θ = `(1)/"tan θ"` = 1
sin θ = `"AB"/"BC" = (1)/sqrt(2)`
∴ 5cot2θ + sin2θ - 1
= `5 xx (1)^2 + (1/sqrt(2))^2 - 1`
= `5 + (1)/(2) - 1`
= `4 + (1)/(2)`
= `(9)/(2)`.
APPEARS IN
संबंधित प्रश्न
In the given figure, ∠Q = 90°, PS is a median om QR from P, and RT divides PQ in the ratio 1 : 2. Find: `("tan" ∠"PSQ")/("tan"∠"PRQ")`
In the given figure, AD is perpendicular to BC. Find: 5 cos x
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 3 - 2 cos ∠BAC + 3 cot ∠BCD
If 4 sinθ = 3 cosθ, find tan2θ + cot2θ
If 5cosθ = 3, find the value of `(4cosθ - sinθ)/(2cosθ + sinθ)`
If 4sinθ = `sqrt(13)`, find the value of `(4sinθ - 3cosθ)/(2sinθ + 6cosθ)`
If 4sinθ = `sqrt(13)`, find the value of 4sin3θ - 3sinθ
If cosecθ = `1(9)/(20)`, show that `(1 - sinθ + cosθ)/(1 + sinθ + cosθ) = (3)/(7)`
If b tanθ = a, find the values of `(cosθ + sinθ)/(cosθ - sinθ)`.
If 12cosecθ = 13, find the value of `(sin^2θ - cos^2θ) /(2sinθ cosθ) xx (1)/tan^2θ`.