Advertisements
Advertisements
प्रश्न
If 4 sinθ = 3 cosθ, find tan2θ + cot2θ
उत्तर
4 sinθ = 3 cosθ
⇒ `(sin θ)/(cos θ) = (3)/(4)`
⇒ tan θ = `(sin θ)/(cos θ) = (3)/(4)`
⇒ cot θ = `(1)/(tanθ) = (4)/(3)`
tan2θ + cot2θ =
= `(3/4)^2 + (4/3)^2`
= `(9)/(16) + (16)/(9)`
= `(81 + 256)/(144)`
= `(337)/(144)`.
APPEARS IN
संबंधित प्रश्न
In the given figure, ∠Q = 90°, PS is a median om QR from P, and RT divides PQ in the ratio 1 : 2. Find: `("tan" ∠"PSQ")/("tan"∠"PRQ")`
In the given figure, ∠Q = 90°, PS is a median om QR from P, and RT divides PQ in the ratio 1 : 2. Find: `("tan" ∠"TSQ")/("tan"∠"PRQ")`
In the given figure, AD is perpendicular to BC. Find:
`(3)/("sin" x) + (4)/("cos" y) - 4 "tan" y`
If 8tanA = 15, find sinA - cosA.
If 3cosθ - 4sinθ = 2cosθ + sinθ, find tanθ.
If cosecθ = `1(9)/(20)`, show that `(1 - sinθ + cosθ)/(1 + sinθ + cosθ) = (3)/(7)`
If b tanθ = a, find the values of `(cosθ + sinθ)/(cosθ - sinθ)`.
If a cotθ = b, prove that `("a"sinθ - "b"cosθ)/("a"sinθ + "b"cosθ) = ("a"^2 - "b"^2)/("a"^2 + "b"^2)`
If 12cosecθ = 13, find the value of `(sin^2θ - cos^2θ) /(2sinθ cosθ) xx (1)/tan^2θ`.
If sinθ = `(3)/(4)`, prove that `sqrt(("cosec"^2θ - cot^2θ)/(sec^2θ - 1)) = sqrt(7)/(3)`.