Advertisements
Advertisements
प्रश्न
If 4 sinθ = 3 cosθ, find tan2θ + cot2θ
उत्तर
4 sinθ = 3 cosθ
⇒ `(sin θ)/(cos θ) = (3)/(4)`
⇒ tan θ = `(sin θ)/(cos θ) = (3)/(4)`
⇒ cot θ = `(1)/(tanθ) = (4)/(3)`
tan2θ + cot2θ =
= `(3/4)^2 + (4/3)^2`
= `(9)/(16) + (16)/(9)`
= `(81 + 256)/(144)`
= `(337)/(144)`.
APPEARS IN
संबंधित प्रश्न
In tan θ = 1, find the value of 5cot2θ + sin2θ - 1.
In the given figure, AD is perpendicular to BC. Find: 5 cos x - 12 sin y + tan x
In the given figure, AD is perpendicular to BC. Find:
`(3)/("sin" x) + (4)/("cos" y) - 4 "tan" y`
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 2 tan ∠BAC - sin ∠BCD
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 3 - 2 cos ∠BAC + 3 cot ∠BCD
If 3cosθ - 4sinθ = 2cosθ + sinθ, find tanθ.
If 35 sec θ = 37, find the value of sin θ - sin θ tan θ.
If b tanθ = a, find the values of `(cosθ + sinθ)/(cosθ - sinθ)`.
If a cotθ = b, prove that `("a"sinθ - "b"cosθ)/("a"sinθ + "b"cosθ) = ("a"^2 - "b"^2)/("a"^2 + "b"^2)`
If 3 tanθ = 4, prove that `sqrt(secθ - "cosec"θ)/(sqrt(secθ - "cosec"θ)) = (1)/sqrt(7)`.