Advertisements
Advertisements
प्रश्न
If 4 sinθ = 3 cosθ, find `(6sinθ - 2cosθ )/(6sinθ + 2cosθ )`
उत्तर
4 sinθ = 3 cosθ
⇒ `(sin θ)/(cos θ) = (3)/(4)`
⇒ tan θ = `(sin θ)/(cos θ) = (3)/(4)`
⇒ cot θ = `(1)/(tanθ) = (4)/(3)`
`(6sinθ - 2cosθ )/(6sinθ + 2cosθ )`
= `(6 xx sinθ/cosθ - 2 xx cosθ/cosθ)/(6 xx sinθ/cosθ + 2 xx cosθ/cosθ)`
= `(6tan θ - 2)/(6tan θ + 2)`
= `(6 xx 3/4 - 2)/(6 xx 3/4 + 2)`
= `(9/2 - 2)/(9/2 + 2)`
= `((9 - 4)/(2))/((9 + 4)/(2)`
= `(5)/(13)`.
APPEARS IN
संबंधित प्रश्न
In the given figure, ∠Q = 90°, PS is a median om QR from P, and RT divides PQ in the ratio 1 : 2. Find: `("tan" ∠"TSQ")/("tan"∠"PRQ")`
In the given figure, AD is perpendicular to BC. Find: 15 tan y
If 4 sinθ = 3 cosθ, find tan2θ + cot2θ
If 3cosθ - 4sinθ = 2cosθ + sinθ, find tanθ.
If 5cosθ = 3, find the value of `(4cosθ - sinθ)/(2cosθ + sinθ)`
If 4sinθ = `sqrt(13)`, find the value of `(4sinθ - 3cosθ)/(2sinθ + 6cosθ)`
If 4sinθ = `sqrt(13)`, find the value of 4sin3θ - 3sinθ
If b tanθ = a, find the values of `(cosθ + sinθ)/(cosθ - sinθ)`.
If 12cosecθ = 13, find the value of `(sin^2θ - cos^2θ) /(2sinθ cosθ) xx (1)/tan^2θ`.
If secA = `(17)/(8)`, verify that `(3 - 4sin^2 "A")/(4 cos^2 "A" - 3)= (3 - tan^2"A")/(1 - 3tan^2"A")`