Advertisements
Advertisements
Question
If 4 sinθ = 3 cosθ, find `(6sinθ - 2cosθ )/(6sinθ + 2cosθ )`
Solution
4 sinθ = 3 cosθ
⇒ `(sin θ)/(cos θ) = (3)/(4)`
⇒ tan θ = `(sin θ)/(cos θ) = (3)/(4)`
⇒ cot θ = `(1)/(tanθ) = (4)/(3)`
`(6sinθ - 2cosθ )/(6sinθ + 2cosθ )`
= `(6 xx sinθ/cosθ - 2 xx cosθ/cosθ)/(6 xx sinθ/cosθ + 2 xx cosθ/cosθ)`
= `(6tan θ - 2)/(6tan θ + 2)`
= `(6 xx 3/4 - 2)/(6 xx 3/4 + 2)`
= `(9/2 - 2)/(9/2 + 2)`
= `((9 - 4)/(2))/((9 + 4)/(2)`
= `(5)/(13)`.
APPEARS IN
RELATED QUESTIONS
In the given figure, AD is perpendicular to BC. Find: 5 cos x
In the given figure, AD is perpendicular to BC. Find: 15 tan y
If 5tanθ = 12, find the value of `(2sinθ - 3cosθ)/(4sinθ - 9cosθ)`.
If 35 sec θ = 37, find the value of sin θ - sin θ tan θ.
If cotθ = `(1)/sqrt(3)`, show that `(1 - cos^2θ)/(2 - sin^2θ) = (3)/(5)`
If cosecθ = `1(9)/(20)`, show that `(1 - sinθ + cosθ)/(1 + sinθ + cosθ) = (3)/(7)`
If b tanθ = a, find the values of `(cosθ + sinθ)/(cosθ - sinθ)`.
If secA = `(5)/(4)`, cerify that `(3sin"A" - 4sin^3"A")/(4cos^3"A" - 3cos"A") = (3tan"A" - tan^3"A")/(1 - 3tan^2"A")`.
If sinθ = `(3)/(4)`, prove that `sqrt(("cosec"^2θ - cot^2θ)/(sec^2θ - 1)) = sqrt(7)/(3)`.
If tan θ = `"m"/"n"`, show that `"m sin θ - n cos θ"/"m sinθ + n cos θ" = ("m"^2 - "n"^2)/("m"^2 + "n"^2)`