English

If tan θ = m n , show that m sin θ - n cos θ m sinθ + n cos θ = m 2 − n 2 m 2 + n 2 - Mathematics

Advertisements
Advertisements

Question

If tan θ = `"m"/"n"`, show that `"m sin θ - n cos θ"/"m sinθ + n cos θ" = ("m"^2 - "n"^2)/("m"^2 + "n"^2)`

Short Note

Solution

tan θ = `"m"/"n" = "Perpendicular"/"Base"`
Hypotenuse
= `sqrt(("Perpendicular")^2 + ("Base")^2`
= `sqrt("m"^2 + "n"^2`

sin θ = `("m"/sqrt("m"^2 + "n"^2))`

cos θ = `("n"/sqrt("m"^2 + "n"^2))`

To show: `"m sin θ - n cos θ"/"m sinθ + n cos θ" = ("m"^2 - "n"^2)/("m"^2 + "n"^2)`.

`"m sin θ - n cos θ"/"m sinθ + n cos θ"`

= `(("m"/sqrt("m"^2 + "n"^2)) - "n"("n"/sqrt("m"^2 + "n"^2)))/(("m"/sqrt("m"^2 + "n"^2)) + "n"("n"/sqrt("m"^2 + "n"^2))`

= `(("m"^2 - "n"^2)/(sqrt("m"^2 + "n"^2)))/(("m"^2 + "n"^2)/(sqrt("m"^2 + "n"^2)`

= `("m"^2 - "n"^2)/(sqrt("m"^2 + "n"^2)) xx sqrt("m"^2 + "n"^2)/("m"^2 + "n"^2)`

= `("m"^2 - "n"^2)/("m"^2 + "n"^2)`.

shaalaa.com
Reciprocal Relations
  Is there an error in this question or solution?
Chapter 26: Trigonometrical Ratios - Exercise 26.1

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 26 Trigonometrical Ratios
Exercise 26.1 | Q 41
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×