Advertisements
Advertisements
Question
If 3 tanθ = 4, prove that `sqrt(secθ - "cosec"θ)/(sqrt(secθ - "cosec"θ)) = (1)/sqrt(7)`.
Solution
3 tanθ = 4
⇒ tanθ = `(4)/(3) = "Perpendicular"/"Base"`
Hypotenuse
= `sqrt(("Perpendicular")^2 + ("Base")^2`
= `sqrt((4)^2 + (3)^2`
= `sqrt(16 + 9)`
= `sqrt(25)`
= 5
secθ = `"Hypotenuse"/"Base" = (5)/(3)`
cosecθ = `"Hypotenuse"/"Perpendicular" = (5)/(4)`
To prove: `sqrt(secθ - "cosec"θ)/(sqrt(secθ - "cosec"θ)) = (1)/sqrt(7)`.
`sqrt(secθ - "cosec"θ)/(sqrt(secθ - "cosec"θ))`
= `(sqrt(5/3 - 5/4))/(sqrt(5/3 + 5/4)`
= `(sqrt(20 - 15)/12)/(sqrt(20 + 15)/12)`
= `(sqrt(5/12))/(sqrt(35/12)`
= `sqrt(5)/sqrt(12) xx sqrt(12)/(sqrt(35)`
= `sqrt(5)/sqrt(12) xx sqrt(12)/(sqrt(5) xx sqrt(7))`
= `(1)/sqrt(7)`.
APPEARS IN
RELATED QUESTIONS
In the given figure, ∠Q = 90°, PS is a median om QR from P, and RT divides PQ in the ratio 1 : 2. Find: `("tan" ∠"TSQ")/("tan"∠"PRQ")`
In the given figure, AD is perpendicular to BC. Find: 5 cos x
In the given figure, AD is perpendicular to BC. Find: 5 cos x - 12 sin y + tan x
In the given figure, AD is perpendicular to BC. Find:
`(3)/("sin" x) + (4)/("cos" y) - 4 "tan" y`
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 2 tan ∠BAC - sin ∠BCD
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 3 - 2 cos ∠BAC + 3 cot ∠BCD
If 4sinθ = `sqrt(13)`, find the value of `(4sinθ - 3cosθ)/(2sinθ + 6cosθ)`
If cotθ = `(1)/sqrt(3)`, show that `(1 - cos^2θ)/(2 - sin^2θ) = (3)/(5)`
If 12 cotθ = 13, find the value of `(2sinθ cosθ)/(cos^2θ - sin^2θ)`.
If tan θ = `"m"/"n"`, show that `"m sin θ - n cos θ"/"m sinθ + n cos θ" = ("m"^2 - "n"^2)/("m"^2 + "n"^2)`