Advertisements
Advertisements
Question
If 5cosθ = 3, find the value of `(4cosθ - sinθ)/(2cosθ + sinθ)`
Solution
If 5cosθ = 3
⇒ cosθ = `(3)/(5) = "Base"/"Hypotenuse"`
Perpendicular
= `sqrt(("Hypotenuse")^2 - ("Base")^2`
= `sqrt((5)^2 - (3)^2`
= `sqrt(25 - 9)`
= `sqrt(16)`
= 4
sinθ = `"Perpendicular"/"Hypotenuse" = (4)/(5)`
`(4cosθ - sinθ)/(2cosθ + sinθ)`
= `(4 xx 3/5 - 4/5)/(2 xx 3/5 + 4/5)`
= `(12/5 - 4/5)/(6/5 + 4/5)`
= `(8/5)/(10/5)`
= `(4)/(5)`.
APPEARS IN
RELATED QUESTIONS
In tan θ = 1, find the value of 5cot2θ + sin2θ - 1.
In the given figure, AD is perpendicular to BC. Find: 5 cos x
In the given figure, AD is perpendicular to BC. Find: 15 tan y
In the given figure, AD is perpendicular to BC. Find:
`(3)/("sin" x) + (4)/("cos" y) - 4 "tan" y`
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 2 tan ∠BAC - sin ∠BCD
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 3 - 2 cos ∠BAC + 3 cot ∠BCD
If 4 sinθ = 3 cosθ, find `(6sinθ - 2cosθ )/(6sinθ + 2cosθ )`
If 3cosθ - 4sinθ = 2cosθ + sinθ, find tanθ.
If cotθ = `(1)/sqrt(3)`, show that `(1 - cos^2θ)/(2 - sin^2θ) = (3)/(5)`
If 3 tanθ = 4, prove that `sqrt(secθ - "cosec"θ)/(sqrt(secθ - "cosec"θ)) = (1)/sqrt(7)`.