Advertisements
Advertisements
प्रश्न
If 5cosθ = 3, find the value of `(4cosθ - sinθ)/(2cosθ + sinθ)`
उत्तर
If 5cosθ = 3
⇒ cosθ = `(3)/(5) = "Base"/"Hypotenuse"`
Perpendicular
= `sqrt(("Hypotenuse")^2 - ("Base")^2`
= `sqrt((5)^2 - (3)^2`
= `sqrt(25 - 9)`
= `sqrt(16)`
= 4
sinθ = `"Perpendicular"/"Hypotenuse" = (4)/(5)`
`(4cosθ - sinθ)/(2cosθ + sinθ)`
= `(4 xx 3/5 - 4/5)/(2 xx 3/5 + 4/5)`
= `(12/5 - 4/5)/(6/5 + 4/5)`
= `(8/5)/(10/5)`
= `(4)/(5)`.
APPEARS IN
संबंधित प्रश्न
In the given figure, AD is perpendicular to BC. Find: 5 cos x
In the given figure, AD is perpendicular to BC. Find: 5 cos x - 12 sin y + tan x
In the given figure, AD is perpendicular to BC. Find:
`(3)/("sin" x) + (4)/("cos" y) - 4 "tan" y`
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 3 - 2 cos ∠BAC + 3 cot ∠BCD
If 3cosθ - 4sinθ = 2cosθ + sinθ, find tanθ.
If cotθ = `(1)/sqrt(3)`, show that `(1 - cos^2θ)/(2 - sin^2θ) = (3)/(5)`
If cosecθ = `1(9)/(20)`, show that `(1 - sinθ + cosθ)/(1 + sinθ + cosθ) = (3)/(7)`
If b tanθ = a, find the values of `(cosθ + sinθ)/(cosθ - sinθ)`.
If 12cosecθ = 13, find the value of `(sin^2θ - cos^2θ) /(2sinθ cosθ) xx (1)/tan^2θ`.
If secA = `(17)/(8)`, verify that `(3 - 4sin^2 "A")/(4 cos^2 "A" - 3)= (3 - tan^2"A")/(1 - 3tan^2"A")`