Advertisements
Advertisements
प्रश्न
In the given figure, AD is perpendicular to BC. Find: 5 cos x - 12 sin y + tan x
उत्तर
ΔADB is a right-angled triangle.
∴ AB2
= AB2 + BD2
= 122 + 162
= 144 + 256
= 400
⇒ AB = 20cm
ΔADC is a right-angled triangle.
∴ AC2
= AD2 + DC2
= 122 + 92
= 144 + 81
= 225
⇒ AC = 15cm
5 cos x - 12 sin y + tan x
= `4 - 12 xx "CD"/"AC" + "AD"/"BD"`
= `4 - 12 xx (9)/(15) + (12)/(16)`
= `4 - (36)/(5) + (3)/(4)`
= `(80 - 144 + 15)/(20)`
= `(-49)/(20)`.
APPEARS IN
संबंधित प्रश्न
In the given figure, AD is perpendicular to BC. Find: 5 cos x
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 3 - 2 cos ∠BAC + 3 cot ∠BCD
If 4 sinθ = 3 cosθ, find tan2θ + cot2θ
If 8tanA = 15, find sinA - cosA.
If 5tanθ = 12, find the value of `(2sinθ - 3cosθ)/(4sinθ - 9cosθ)`.
If cotθ = `sqrt(7)`, show that `("cosec"^2θ -sec^2θ)/("cosec"^2θ + sec^2θ) = (3)/(4)`
If 12 cotθ = 13, find the value of `(2sinθ cosθ)/(cos^2θ - sin^2θ)`.
If secA = `(5)/(4)`, cerify that `(3sin"A" - 4sin^3"A")/(4cos^3"A" - 3cos"A") = (3tan"A" - tan^3"A")/(1 - 3tan^2"A")`.
If secA = `(17)/(8)`, verify that `(3 - 4sin^2 "A")/(4 cos^2 "A" - 3)= (3 - tan^2"A")/(1 - 3tan^2"A")`
If tan θ = `"m"/"n"`, show that `"m sin θ - n cos θ"/"m sinθ + n cos θ" = ("m"^2 - "n"^2)/("m"^2 + "n"^2)`