Advertisements
Advertisements
प्रश्न
If cotθ = `(1)/sqrt(3)`, show that `(1 - cos^2θ)/(2 - sin^2θ) = (3)/(5)`
उत्तर
cotθ = `(1)/sqrt(3)`
⇒ cotθ = `(1)/"tanθ" = (1)/sqrt(3) = "Base"/"Perpendicular"`
Hypotenuse
= `sqrt(("Perpendicular")^2 + ("Base")^2`
= `sqrt((sqrt(3))^2 + 1`
= `sqrt(3 + 1)`
= 2
cosθ = `"Base"/"Hypotenuse" = (1)/(2)`,
sinθ = `"Perpendicular"/"Hypotenuse" = sqrt(3)/(2)`
To show: `(1 - cos^2θ)/(2 - sin^2θ) = (3)/(5)`
`(1 - cos^2θ)/(2 - sin^2θ)`
= `(1 - (cosθ)^2)/(2 - (sinθ)^2)`
= `(1 - 1/4)/(2 - 3/4)`
= `(3/4)/(5/4)`
= `(3)/(5)`.
APPEARS IN
संबंधित प्रश्न
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 2 tan ∠BAC - sin ∠BCD
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 3 - 2 cos ∠BAC + 3 cot ∠BCD
If 4 sinθ = 3 cosθ, find `(6sinθ - 2cosθ )/(6sinθ + 2cosθ )`
If 3cosθ - 4sinθ = 2cosθ + sinθ, find tanθ.
If 4sinθ = `sqrt(13)`, find the value of `(4sinθ - 3cosθ)/(2sinθ + 6cosθ)`
If 5tanθ = 12, find the value of `(2sinθ - 3cosθ)/(4sinθ - 9cosθ)`.
If a cotθ = b, prove that `("a"sinθ - "b"cosθ)/("a"sinθ + "b"cosθ) = ("a"^2 - "b"^2)/("a"^2 + "b"^2)`
If 12 cotθ = 13, find the value of `(2sinθ cosθ)/(cos^2θ - sin^2θ)`.
If sinθ = `(3)/(4)`, prove that `sqrt(("cosec"^2θ - cot^2θ)/(sec^2θ - 1)) = sqrt(7)/(3)`.
If tan θ = `"m"/"n"`, show that `"m sin θ - n cos θ"/"m sinθ + n cos θ" = ("m"^2 - "n"^2)/("m"^2 + "n"^2)`