Advertisements
Advertisements
प्रश्न
If 4sinθ = `sqrt(13)`, find the value of `(4sinθ - 3cosθ)/(2sinθ + 6cosθ)`
उत्तर
Consider ΔABC, where ∠B = 90°
⇒ 4sinθ = `sqrt(13)`
⇒ 4sinθ = `sqrt(13)/(4)`
⇒ sinθ = `"Perpendicular"/"Hypotenuse" = "BC"/"AC" = sqrt(13)/(4)`
By Pythagoras theorem,
AC2 = AB2 + BC2
⇒ AB2
= AC2 - BC2
= `4^2 - (sqrt(13))^2`
= 16 - 13
= 3
⇒ AB = `sqrt(3)`
Now,
cosθ = `"Base"/"Hypotenuse" = "AB"/"AC" = sqrt(3)/(4)`
`(4sinθ - 3cosθ)/(2sinθ + 6cosθ)`
= `(4 xx sqrt(3)/(4) - 3 xx sqrt(3)/4)/(2 xx sqrt(13)/4 + 6 cc sqrt(3)/4)`
= `((4sqrt(13) - 3sqrt(13))/(4))/((2sqrt(13) + 6sqrt(13))/(4)`
= `(4sqrt(13) - 3sqrt(13))/(2sqrt(13) + 6sqrt(13)`
= `sqrt(13)/(8sqrt(13)`
= `(1)/(8)`.
APPEARS IN
संबंधित प्रश्न
In the given figure, ∠Q = 90°, PS is a median om QR from P, and RT divides PQ in the ratio 1 : 2. Find: `("tan" ∠"TSQ")/("tan"∠"PRQ")`
In the given figure, AD is perpendicular to BC. Find: 5 cos x
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 2 tan ∠BAC - sin ∠BCD
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 3 - 2 cos ∠BAC + 3 cot ∠BCD
If 24cosθ = 7 sinθ, find sinθ + cosθ.
If 4 sinθ = 3 cosθ, find tan2θ + cot2θ
If 3cosθ - 4sinθ = 2cosθ + sinθ, find tanθ.
If 5cosθ = 3, find the value of `(4cosθ - sinθ)/(2cosθ + sinθ)`
If 4sinθ = `sqrt(13)`, find the value of 4sin3θ - 3sinθ
If secA = `(17)/(8)`, verify that `(3 - 4sin^2 "A")/(4 cos^2 "A" - 3)= (3 - tan^2"A")/(1 - 3tan^2"A")`