Advertisements
Advertisements
प्रश्न
If 5cosθ = 3, find the value of `(4cosθ - sinθ)/(2cosθ + sinθ)`
उत्तर
If 5cosθ = 3
⇒ cosθ = `(3)/(5) = "Base"/"Hypotenuse"`
Perpendicular
= `sqrt(("Hypotenuse")^2 - ("Base")^2`
= `sqrt((5)^2 - (3)^2`
= `sqrt(25 - 9)`
= `sqrt(16)`
= 4
sinθ = `"Perpendicular"/"Hypotenuse" = (4)/(5)`
`(4cosθ - sinθ)/(2cosθ + sinθ)`
= `(4 xx 3/5 - 4/5)/(2 xx 3/5 + 4/5)`
= `(12/5 - 4/5)/(6/5 + 4/5)`
= `(8/5)/(10/5)`
= `(4)/(5)`.
APPEARS IN
संबंधित प्रश्न
In the given figure, AD is perpendicular to BC. Find: 15 tan y
In the given figure, AD is perpendicular to BC. Find: 5 cos x - 12 sin y + tan x
If 24cosθ = 7 sinθ, find sinθ + cosθ.
If 4 sinθ = 3 cosθ, find `(6sinθ - 2cosθ )/(6sinθ + 2cosθ )`
If 3cosθ - 4sinθ = 2cosθ + sinθ, find tanθ.
If 4sinθ = `sqrt(13)`, find the value of `(4sinθ - 3cosθ)/(2sinθ + 6cosθ)`
If 4sinθ = `sqrt(13)`, find the value of 4sin3θ - 3sinθ
If 5tanθ = 12, find the value of `(2sinθ - 3cosθ)/(4sinθ - 9cosθ)`.
If cotθ = `sqrt(7)`, show that `("cosec"^2θ -sec^2θ)/("cosec"^2θ + sec^2θ) = (3)/(4)`
If 3 tanθ = 4, prove that `sqrt(secθ - "cosec"θ)/(sqrt(secθ - "cosec"θ)) = (1)/sqrt(7)`.