Advertisements
Advertisements
Question
If b tanθ = a, find the values of `(cosθ + sinθ)/(cosθ - sinθ)`.
Solution
b tanθ = a
⇒ tanθ = `"a"/"b"`
Consider `(cosθ + sinθ)/(cosθ - sinθ)`
Dividing the numerator and demoninator by cosθ, we get
`(cosθ + sinθ)/(cosθ - sinθ)`
= `(1 + sinθ/cosθ)/(1 - sinθ/cosθ)`
= `(1 + tanθ)/(1 - tanθ)`
= `(1 + "a"/"b")/(1 - "a"/"b")`
= `(("b" + "a")/"b")/(("b" - "a")/"b")`
= `(("b" + "a"))/(("b" - "a")`.
APPEARS IN
RELATED QUESTIONS
In the given figure, ∠Q = 90°, PS is a median om QR from P, and RT divides PQ in the ratio 1 : 2. Find: `("tan" ∠"PSQ")/("tan"∠"PRQ")`
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 3 - 2 cos ∠BAC + 3 cot ∠BCD
If 8tanA = 15, find sinA - cosA.
If 35 sec θ = 37, find the value of sin θ - sin θ tan θ.
If cotθ = `(1)/sqrt(3)`, show that `(1 - cos^2θ)/(2 - sin^2θ) = (3)/(5)`
If cosecθ = `1(9)/(20)`, show that `(1 - sinθ + cosθ)/(1 + sinθ + cosθ) = (3)/(7)`
If a cotθ = b, prove that `("a"sinθ - "b"cosθ)/("a"sinθ + "b"cosθ) = ("a"^2 - "b"^2)/("a"^2 + "b"^2)`
If 12 cotθ = 13, find the value of `(2sinθ cosθ)/(cos^2θ - sin^2θ)`.
If sinθ = `(3)/(4)`, prove that `sqrt(("cosec"^2θ - cot^2θ)/(sec^2θ - 1)) = sqrt(7)/(3)`.
If tan θ = `"m"/"n"`, show that `"m sin θ - n cos θ"/"m sinθ + n cos θ" = ("m"^2 - "n"^2)/("m"^2 + "n"^2)`