Advertisements
Advertisements
प्रश्न
If secA = `(17)/(8)`, verify that `(3 - 4sin^2 "A")/(4 cos^2 "A" - 3)= (3 - tan^2"A")/(1 - 3tan^2"A")`
उत्तर
secA = `(17)/(8)`
⇒ cos A = `(8)/(17) = "Base"/"Hypotenuse"`
Perpendicular
= `sqrt(("Hypotenuse")^2 - ("Base")^2`
= `sqrt((17)^2 - (8)^2`
= `sqrt(289 - 64)`
= `sqrt(225)`
= 5
sin A = `"Perpendicular"/"Hypotenuse" = (15)/(17)`
tan A = `"Perpendicular"/"Base" = (15)/(8)`
To prove: `(3 - 4sin^2 "A")/(4 cos^2 "A" - 3)= (3 - tan^2"A")/(1 - 3tan^2"A")`
L.H.S. = `(3 - 4sin^2 "A")/(4 cos^2 "A" - 3)`
= `(3 - 4(15/17)^2)/(4(8/17)^2 - 3)`
= `(3 - 900/289)/(256/289 - 3)`
= `((867 - 900)/289)/((256 - 867)/289)`
= `(-33)/(-611)`
= `(33)/(611)`
R.H.S. = `(3 - tan^2"A")/(1 - 3tan^2"A")`
= `(3 - (15/8)^2)/(1 -3(15/8)^2)`
= `(3 - 225/64)/(1 - 675/64)`
= `((192 - 225)/64)/((64 - 675)/64)`
= `(-33)/(-611)`
= `(33)/(611)`.
APPEARS IN
संबंधित प्रश्न
In the given figure, ∠Q = 90°, PS is a median om QR from P, and RT divides PQ in the ratio 1 : 2. Find: `("tan" ∠"TSQ")/("tan"∠"PRQ")`
If 24cosθ = 7 sinθ, find sinθ + cosθ.
If 5cosθ = 3, find the value of `(4cosθ - sinθ)/(2cosθ + sinθ)`
If cotθ = `(1)/sqrt(3)`, show that `(1 - cos^2θ)/(2 - sin^2θ) = (3)/(5)`
If cosecθ = `1(9)/(20)`, show that `(1 - sinθ + cosθ)/(1 + sinθ + cosθ) = (3)/(7)`
If b tanθ = a, find the values of `(cosθ + sinθ)/(cosθ - sinθ)`.
If a cotθ = b, prove that `("a"sinθ - "b"cosθ)/("a"sinθ + "b"cosθ) = ("a"^2 - "b"^2)/("a"^2 + "b"^2)`
If cotθ = `sqrt(7)`, show that `("cosec"^2θ -sec^2θ)/("cosec"^2θ + sec^2θ) = (3)/(4)`
If 12cosecθ = 13, find the value of `(sin^2θ - cos^2θ) /(2sinθ cosθ) xx (1)/tan^2θ`.
If sinθ = `(3)/(4)`, prove that `sqrt(("cosec"^2θ - cot^2θ)/(sec^2θ - 1)) = sqrt(7)/(3)`.