Advertisements
Advertisements
प्रश्न
If 12 cotθ = 13, find the value of `(2sinθ cosθ)/(cos^2θ - sin^2θ)`.
उत्तर
cot θ = `(13)/(12)`
⇒ `cosθ /sinθ = (13)/(12)`
⇒ `"Base"/"Hypotenuse" xx "Hypotenuse"/"Perpendicular" = (13)/(12)`
⇒ `"Base"/"Perpendicular" = (13)/(12)`
Hypotenuse
= `sqrt(("Perpendicular")^2 + ("Base")^2`
= `sqrt((12)^2 + (13)^2`
= `sqrt(144 + 169)`
= `sqrt(313)`
`(2sinθ cosθ)/(cos^2θ - sin^2θ)`
= `(2 xx 12/sqrt(313) xx 13/sqrt(313))/((13/sqrt(313))^2 - (12/sqrt(313))^2`
= `(312/313)/(169/313 - 144/313)`
= `(312/313)/(25/313)`
= `(312)/(25)`.
APPEARS IN
संबंधित प्रश्न
In the given figure, ∠Q = 90°, PS is a median om QR from P, and RT divides PQ in the ratio 1 : 2. Find: `("tan" ∠"PSQ")/("tan"∠"PRQ")`
In the given figure, AD is perpendicular to BC. Find: 5 cos x
In the given figure, AD is perpendicular to BC. Find:
`(3)/("sin" x) + (4)/("cos" y) - 4 "tan" y`
If 4 sinθ = 3 cosθ, find `(6sinθ - 2cosθ )/(6sinθ + 2cosθ )`
If 8tanA = 15, find sinA - cosA.
If 3cosθ - 4sinθ = 2cosθ + sinθ, find tanθ.
If 35 sec θ = 37, find the value of sin θ - sin θ tan θ.
If cotθ = `(1)/sqrt(3)`, show that `(1 - cos^2θ)/(2 - sin^2θ) = (3)/(5)`
If cosecθ = `1(9)/(20)`, show that `(1 - sinθ + cosθ)/(1 + sinθ + cosθ) = (3)/(7)`
If sinθ = `(3)/(4)`, prove that `sqrt(("cosec"^2θ - cot^2θ)/(sec^2θ - 1)) = sqrt(7)/(3)`.