Advertisements
Advertisements
प्रश्न
If secA = `(5)/(4)`, cerify that `(3sin"A" - 4sin^3"A")/(4cos^3"A" - 3cos"A") = (3tan"A" - tan^3"A")/(1 - 3tan^2"A")`.
उत्तर
sec A = `(5)/(4)`
⇒ cos A = `(4)/(5) = "Base"/"Hypotenuse"`
Perpendicular
= `sqrt(("Hypotenuse")^2 - ("Base")^2`
= `sqrt(25 - 16)`
= `sqrt(9)`
= 3
sin A = `"Perpendicular"/"Hypotenuse" = (3)/(5)`
tan A = `"Perpendicular"/"Base" = (3)/(4)`
To show: `(3sin"A" - 4sin^3"A")/(4cos^3"A" - 3cos"A") = (3tan"A" - tan^3"A")/(1 - 3tan^2"A")`.
L.H.S. = `(3sin"A" - 4sin^3"A")/(4cos^3"A" - 3cos"A")`
= `(3(3/5) - 4(3/5)^3)/(4(4/5)^3 - 3(4/5)`
= `(9/5 - 108/125)/(256/125 - 12/5)`
= `((225 - 108)/125)/((256 - 300)/125)`
= `(117)/(-44)`
R.H.S. = `(3tan"A" - tan^3"A")/(1 - 3tan^2"A")`
= `(3(3/4) - (3/4)^3)/(1 - 3(3/4)^2`
= `(9/4 - 27/64)/(1 - 27/16)`
= `((144 - 27)/64)/((16 - 27)/16)`
= `(117)/(64) xx (16)/(-11)`
= `(117)/(4) xx (1)/(-11)`
= `(-117)/(44)`
⇒ L.H.S. = R.H.S.
APPEARS IN
संबंधित प्रश्न
In the given figure, ∠Q = 90°, PS is a median om QR from P, and RT divides PQ in the ratio 1 : 2. Find: `("tan" ∠"PSQ")/("tan"∠"PRQ")`
In the given figure, ∠Q = 90°, PS is a median om QR from P, and RT divides PQ in the ratio 1 : 2. Find: `("tan" ∠"TSQ")/("tan"∠"PRQ")`
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 3 - 2 cos ∠BAC + 3 cot ∠BCD
If 4 sinθ = 3 cosθ, find tan2θ + cot2θ
If 3cosθ - 4sinθ = 2cosθ + sinθ, find tanθ.
If 4sinθ = `sqrt(13)`, find the value of 4sin3θ - 3sinθ
If 35 sec θ = 37, find the value of sin θ - sin θ tan θ.
If cotθ = `sqrt(7)`, show that `("cosec"^2θ -sec^2θ)/("cosec"^2θ + sec^2θ) = (3)/(4)`
If 12cosecθ = 13, find the value of `(sin^2θ - cos^2θ) /(2sinθ cosθ) xx (1)/tan^2θ`.
If secA = `(17)/(8)`, verify that `(3 - 4sin^2 "A")/(4 cos^2 "A" - 3)= (3 - tan^2"A")/(1 - 3tan^2"A")`