Advertisements
Advertisements
प्रश्न
In triangle ABC, ∠B = 90° and tan A = 0.75. If AC = 30 cm, find the lengths of AB and BC.
उत्तर
Consider the figure :
tan A = `(75)/(100) = (3)/(4)`
i.e.`"perpendicular"/"base" = "BC"/"AB" = (3)/(4)`
Therefore if length of base = 4x, length of perpendicular = 3x
Since
BC2 + AB2 = AC2 ...[ Using Pythagoras Theorem ]
(3x)2 + (4x)2 = AC2
AC2 = 9x2 + 16x2 = 25x2
∴ Ac = 5x
Now
Ac = 30
5x = 30
x = 6
Therefore
AB = 4x
= 4 x 6
= 24 cm
And
Bc = 3x
= 3 x 6
= 18 cm
APPEARS IN
संबंधित प्रश्न
In a ΔABC, right angled at A, if tan C = `sqrt3` , find the value of sin B cos C + cos B sin C.
If sin A = `9/41` find all the values of cos A and tan A
In ΔABC , ∠C = 90° ∠ABC = θ° BC = 21 units . and AB= 29 units. Show thaT `(cos^2 theta - sin^2 theta)=41/841`
If sin (A + B) = 1 and cos (A – B) = 1, 00 ≤ (A + B) ≤ 900 and A > B, then find A and B.
In the diagram, given below, triangle ABC is right-angled at B and BD is perpendicular to AC.
Find:
(i) cos ∠DBC
(ii) cot ∠DBA
In triangle ABC, AD is perpendicular to BC. sin B = 0.8, BD = 9 cm and tan C = 1.
Find the length of AB, AD, AC, and DC.
If sin A = `(sqrt3)/(2)` and cos B = `(sqrt3)/(2)` , find the value of : `(tan"A" – tan"B")/(1+tan"A" tan"B")`
If 8 tanθ = 15, find (i) sinθ, (ii) cotθ, (iii) sin2θ - cot2θ
In the given figure, AC = 13cm, BC = 12 cm and ∠B = 90°. Without using tables, find the values of: `("cos A" - "sin A")/("cos A" + "sin A")`
From the given figure, find the values of sec B