Advertisements
Advertisements
प्रश्न
If 8 tanθ = 15, find (i) sinθ, (ii) cotθ, (iii) sin2θ - cot2θ
उत्तर
8tan θ = 15
⇒ tan θ = `(15)/(8) = "Perpendicular"/"Base"`
Hypotenuse
= `sqrt(("Perpendicular")^2 + ("Base")^2`
= `sqrt(15^2 + 8^2)`
= `sqrt(225 + 64)`
= `sqrt(289)`
= 17
(i) sin θ = `"Perpendicular"/"Hypotenuse" = (15)/(17)`
cot θ = `(1)/"tan θ " = (8)/(15)`
(iii) sin2θ - cot2θ
= (sin θ + cot θ)(sin θ - cot θ)
= `(15/17 + 8/15)(15/17 - 8/15)`
= `((225 + 136)/225)((225 - 136)/225)`
= `(361/225)(89/255)`
= `(32129)/(65025)`.
APPEARS IN
संबंधित प्रश्न
If 8 tan A = 15, find sin A – cos A.
If Sin (A + B) = 1 and cos (A – B) = 1, 0° < A + B ≤ 90° A ≥ B. Find A & B
If tan `theta = a/b`, show that `((a sin theta - b cos theta))/((a sin theta + bcos theta))= ((a^2-b^2))/(a^2+b^2)`
If ∠A and ∠B are acute angles such that sin A = Sin B prove that ∠A = ∠B.
Evaluate:
`(sin^2 30^0 + 4 cot^2 45^0-sec^2 60^0)(cosec^2 45^0 sec^2 30^0)`
If A = 450 , verify that:
(ii) cos 2A = 2 cos2 A – 1 = 1 – 2 sin2 A
If sin A + cosec A = 2;
Find the value of sin2 A + cosec2 A.
If 3 cos A = 4 sin A, find the value of :
(i) cos A(ii) 3 - cot2 A + cosec2A.
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cose C = `(15)/(11)`
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: cos C