Advertisements
Advertisements
Question
If 8 tanθ = 15, find (i) sinθ, (ii) cotθ, (iii) sin2θ - cot2θ
Solution
8tan θ = 15
⇒ tan θ = `(15)/(8) = "Perpendicular"/"Base"`
Hypotenuse
= `sqrt(("Perpendicular")^2 + ("Base")^2`
= `sqrt(15^2 + 8^2)`
= `sqrt(225 + 64)`
= `sqrt(289)`
= 17
(i) sin θ = `"Perpendicular"/"Hypotenuse" = (15)/(17)`
cot θ = `(1)/"tan θ " = (8)/(15)`
(iii) sin2θ - cot2θ
= (sin θ + cot θ)(sin θ - cot θ)
= `(15/17 + 8/15)(15/17 - 8/15)`
= `((225 + 136)/225)((225 - 136)/225)`
= `(361/225)(89/255)`
= `(32129)/(65025)`.
APPEARS IN
RELATED QUESTIONS
If sec 2A = cosec (A – 42°) where 2A is an acute angle. Find the value of A.
If cos θ = `7/25` find the value of all T-ratios of θ .
If cot θ = `3/4` , show that `sqrt("sec θ - cosecθ"/"secθ + cosecθ" ) = 1/ sqrt(7)`
If A = 450, verify that :
(i) sin 2A = 2 sin A cos A
If A = 600 and B = 300, verify that:
(i) sin (A – B) = sin A cos B – cos A sin B
sin20° = cos ______°
tan 30° × tan ______° = 1
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: sinA
If cosB = `(1)/(3)` and ∠C = 90°, find sin A, and B and cot A.
If sin A = `(7)/(25)`, find the value of : `"cos A" + (1)/"cot A"`