Advertisements
Advertisements
Question
If cos θ = `7/25` find the value of all T-ratios of θ .
Solution
Let us first draw a right ΔABC, right angled at B and ∠𝐶 = 𝜃.
Now, we know that cos 𝜃 = `"𝐵𝑎𝑠𝑒" /"ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠" = (BC)/(AC) = 7/25`
So, if BC = 7k, then AC = 25k, were k is a positive number.
Now, using Pythagoras theorem, we have:
`AC^2= AB^2 + BC^2`
`⟹ AB^2 = AC^2 − BC^2 = (25K)^2 − (7K)^2`
`⟹ AB^2 = 625K^2 − 49K^2 = 576^2`
⟹ AB = 24k
Now, finding the trigonometric ratios using their definitions, we get:
Sin 𝜃 =` (AB)/(AC) = (24K)/(25K) = 24/25`
Sin 𝜃 =`(AB)/(BC) = (24K)/(7K) = 24/7`
∴ cot 𝜃 = `1/ (tan θ) = 7/24 , cosec θ = 1/(sin θ) = 25/24 and sec θ = 1/ (cos θ) = 25/7`
APPEARS IN
RELATED QUESTIONS
If 8 tan A = 15, find sin A – cos A.
If A and B are acute angles such that tan A = 1/2, tan B = 1/3 and tan (A + B) = `(tan A + tan B)/(1- tan A tan B)` A + B = ?
If sin θ = ` (a^2 - b^2)/(a^2+b^2)`find all the values of all T-ratios of θ .
If cos θ=0.6 show that (5sin θ -3tan θ) = 0
If sin θ = `3/4` show that `sqrt((cosec^2theta - cot^2theta)/(sec^2theta-1)) =sqrt(7)/3`
In the adjoining figure, ΔABC is right-angled at B and ∠A = 450. If AC = 3`sqrt(2)`cm, find (i) BC, (ii) AB.
If sin (A + B) = 1 and cos (A – B) = 1, 00 ≤ (A + B) ≤ 900 and A > B, then find A and B.
Given: tan A = `4/3 , "find" : ("cosec""A")/(cot "A"– sec "A")`
Given: 4 cot A = 3
find :
(i) sin A
(ii) sec A
(iii) cosec2A - cot2A.
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: sinB