Advertisements
Advertisements
Question
Given: 4 cot A = 3
find :
(i) sin A
(ii) sec A
(iii) cosec2A - cot2A.
Solution
Consider the diagram below :
4 cot A = 3
cot A = `(3)/(4)`
i.e.`"base"/"perpendicular" = (3)/(4) ⇒ "AB"/"BC" =(3)/(4)`
Therefore if length of AB = 3x, length of BC = 4x
Since
AB2 + BC2 = AC2 ...[ Using Pythagoras Theorem ]
(3x)2 + (4x)2 = AC2
AC2 = 9x2 + 16x2 = 25x2
∴ AC = 5x ...( hypotenuse )
(i) sin A = `"perpendicular"/"hypotenuse " = (4x)/(5x) = (4)/(5)`
(ii) sec A = `"hypotenuse"/"base" = "AC"/"AB" = (5x)/(3x) = 5/3`
(iii) cosec A = `"hypotenuse"/"perpendicular" = "AC"/"BC" = (5x)/(4x) = (5)/(4)`
cot A = `(3)/(4)`
cosec2 A – cot2 A
=`(5/4)^2 – (3/4)^2`
= `( 25 - 9)/(16)`
= `(16)/(16)`
= 1
APPEARS IN
RELATED QUESTIONS
In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of Sin A cos C + Cos A Sin C
If sec θ = `5/4 ` show that `((sin θ - 2 cos θ))/(( tan θ - cot θ)) = 12/7`
If sin θ = `a/b`, show that `(sectheta + tan theta) = sqrt((b+a)/(b-a))`
`(cos 28°)/(sin 62°)` = ?
Given: tan A = `4/3 , "find" : ("cosec""A")/(cot "A"– sec "A")`
If tan x = `1(1)/(3)`, find the value of : 4 sin2x - 3 cos2x + 2
If 5 cos θ = 3, evaluate : `(co secθ – cot θ)/(co secθ + cot θ)`
In the given figure, PQR is a triangle, in which QS ⊥ PR, QS = 3 cm, PS = 4 cm and QR = 12 cm, find the value of: cot2P - cosec2P
In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of sin x
In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of tan x. cot y