English

Given: 4 Cot a = 3 Find; Sin a Sec a Cosec2a - Cot2a - Mathematics

Advertisements
Advertisements

Question

Given: 4 cot A = 3
find :

(i) sin A
(ii) sec A
(iii) cosec2A - cot2A.

Sum

Solution

Consider the diagram below :

4 cot A = 3

cot A = `(3)/(4)`

i.e.`"base"/"perpendicular" = (3)/(4) ⇒ "AB"/"BC" =(3)/(4)`

Therefore if length of AB = 3x, length of BC = 4x

Since
AB2 + BC2 = AC2             ...[ Using Pythagoras Theorem ]

(3x)2 + (4x)2 = AC2

AC2 = 9x2 + 16x2 = 25x2

∴ AC = 5x  ...( hypotenuse )

(i) sin  A = `"perpendicular"/"hypotenuse " = (4x)/(5x) = (4)/(5)`

(ii) sec A = `"hypotenuse"/"base" = "AC"/"AB" = (5x)/(3x) = 5/3`

(iii) cosec A = `"hypotenuse"/"perpendicular" = "AC"/"BC" = (5x)/(4x) = (5)/(4)`

cot A = `(3)/(4)`

cosecA – cot2

=`(5/4)^2 – (3/4)^2`

= `( 25 - 9)/(16)`

= `(16)/(16)`

= 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Trigonometrical Ratios [Sine, Consine, Tangent of an Angle and their Reciprocals] - Exercise 22 (A) [Page 280]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 22 Trigonometrical Ratios [Sine, Consine, Tangent of an Angle and their Reciprocals]
Exercise 22 (A) | Q 10 | Page 280
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×