Advertisements
Advertisements
Question
In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of tan x. cot y
Solution
Since AD is median on BC, we have
BD = DC = `(1)/(2) xx "BC" = (1)/(2) xx 12` = 6cm
ΔADB is a right-angled triangle.
∴ AB2
= AD2 + BD2
= 82 + 62
= 64 + 36
= 100
⇒ AB = 10cm
ΔADC is a right-angled triangle.
∴ AC2
= AD2 + DC2
= 82 + 62
= 64 + 36
= 100
⇒ AC = 10cm
cos x = `"BD"/"AB" = (6)/(10) = (3)/(5) and sin y = "DC"/"AC" = (6)/(10) = (3)/(5)`
∴ tan x = `"sin x"/"cos x" = (4/5)/(3/5) = (4)/(3) and cot y = "cos y"/"sin y" = (4/5)/(3/5) = (4)/(3)`
∴ tan x. cot y = `(4)/(3) xx (4)/(3) = (16)/(9)`.
APPEARS IN
RELATED QUESTIONS
If `sin A = 9/41` compute cos 𝐴 𝑎𝑛𝑑 tan 𝐴
if `sec theta = 5/4` find the value of `(sin theta - 2 cos theta)/(tan theta - cot theta)`
If A = 300 , verify that:
(ii) cos 2A = `(1- tan^2A)/(1+tan^2A)`
If A = 300 , verify that:
(iii) tan 2A = `(2tanA)/(1-tan^2A)`
From the following figure, find the values of:
- sin A
- cos A
- cot A
- sec C
- cosec C
- tan C
Given: tan A = `4/3 , "find" : ("cosec""A")/(cot "A"– sec "A")`
If cot θ= 1; find the value of: 5 tan2 θ+ 2 sin2 θ- 3
Given : 5 cos A - 12 sin A = 0; evaluate:
`(sin "A"+cos"A")/(2 cos"A"– sin"A")`
In the given figure; ∠C = 90o and D is mid-point of AC.
Find :
(i) `(tan∠CAB)/ (tan∠CDB)` (ii) `(tan∠ABC)/ (tan∠DBC)`
If sinA = 0.8, find the other trigonometric ratios for A.