Advertisements
Advertisements
Question
if `sec theta = 5/4` find the value of `(sin theta - 2 cos theta)/(tan theta - cot theta)`
Solution
We have `sec theta= 5/4`
In ΔABC
`AC^2 = AB^2 + BC^2`
`=> (5)^2 = AB^2 + (4)^2`
`=> AB^2 = 25 - 16`
=> AB = 3
`∴ sin theta (AB)/(AC) = 3/5 , cos theta = 4/5, tan theta =3/4 , cot theta = 3/4`
NOw
`(sin theta - 2 cos theta)/(tan theta - cot theta) = (3/5 - 2 xx 4/5)/(3/4 - 4/3)`
`= 1/5 xx (3-8)/((9 - 16)/12)`
`= 1/5 xx (-5/7)xx12`
`= 12/7`
APPEARS IN
RELATED QUESTIONS
If sec θ = `5/4 ` show that `((sin θ - 2 cos θ))/(( tan θ - cot θ)) = 12/7`
In a ΔABC , ∠B = 90° , AB = 12 cm and BC = 5 cm Find
(i) cos A (ii) cosec A (iii) cos C (iv) cosec C
Form the following figure, find the values of:
- cos B
- tan C
- sin2B + cos2B
- sin B. cos C + cos B. sin C
From the following figure, find the values of
(i) sin B
(ii) tan C
(iii) sec2 B - tan2B
(iv) sin2C + cos2C
Given : sin A = `(3)/(5)` , find : (i) tan A (ii) cos A
Given: 4 cot A = 3
find :
(i) sin A
(ii) sec A
(iii) cosec2A - cot2A.
If 2 sin x = `sqrt3` , evaluate.
(i) 4 sin3 x - 3 sin x.
(ii) 3 cos x - 4 cos3 x.
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tanB = `(8)/(15)`
From the given figure, prove that θ + ∅ = 90°. Also prove that there are two other right angled triangles. Find sin α, cos β and tan ∅
Given that sin α = `1/2` and cos β = `1/2`, then the value of α + β is ______.