Advertisements
Advertisements
Question
Given : 5 cos A - 12 sin A = 0; evaluate:
`(sin "A"+cos"A")/(2 cos"A"– sin"A")`
Solution
5 cos A – 12 sin A = 0
5 cos A = 12 sin A
`sin "A"/cos "A" = (5)/(12)`
tan A = `(5)/(12)`
Now,
`(sin "A"+cos"A")/(2 cos"A"– sin"A") = (sin"A"/cos"A" + cos"A"/cos"A")/(2 cos"A"/cos"A" – sin"A"/cos"A")`
= `(tan "A"+1)/(2– tan "A")`
= `(5/12+1)/(2–5/12)`
= `(17/12)/(19/12)`
= `(17)/(19)`
APPEARS IN
RELATED QUESTIONS
If 3cos θ – 4sin = 2cos θ + sin θ Find tan θ.
If A = 30° B = 60° verify Sin (A + B) = Sin A Cos B + cos A sin B
If `sin (A – B) = 1/2` and `cos (A + B) = 1/2`, `0^@` < A + `B <= 90^@`, A > B Find A and B.
If A and B are acute angles such that tan A = 1/2, tan B = 1/3 and tan (A + B) = `(tan A + tan B)/(1- tan A tan B)` A + B = ?
If cosec θ= 2 show that `(cot θ +sin θ /(1+cos θ )) =2`
Evaluate:
`2cos^2 60^0+3 sin^2 45^0 - 3 sin^2 30^0 + 2 cos^2 90 ^0`
If 5 cos = 6 sin ; evaluate:
(i) tan θ
(ii) `(12 sin θ – 3 cos θ)/(12 sin θ + 3 cos θ)`
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: sinA
In the given figure, AC = 13cm, BC = 12 cm and ∠B = 90°. Without using tables, find the values of: sin A cos A
Statement A (Assertion): For 0 < θ ≤ 90°, cosec θ – cot θ and cosec θ + cot θ are reciprocal of each other.
Statement R (Reason): cosec2 θ – cot2 θ = 1