Advertisements
Advertisements
Question
In the given figure, AC = 13cm, BC = 12 cm and ∠B = 90°. Without using tables, find the values of: sin A cos A
Solution
ΔABC is a right-angled triangle.
∴ AC2 = AB2 + BC2
⇒ AB2
= AC2 - BC2
= 132 - 122
= 169 - 144
= 25
⇒ AB = 5cm
sin A = `"BC"/"AC" = (12)/(13)`
cos A = `"AB"/"AC" = (5)/(13)`
sin A cos A
= `(12)/(13) xx (5)/(13)`
= `(60)/(169)`.
APPEARS IN
RELATED QUESTIONS
If 3cos θ – 4sin = 2cos θ + sin θ Find tan θ.
If A and B are acute angles such that tan A = 1/2, tan B = 1/3 and tan (A + B) = `(tan A + tan B)/(1- tan A tan B)` A + B = ?
If sin θ = `a/b`, show that `(sectheta + tan theta) = sqrt((b+a)/(b-a))`
If A = 600 and B = 300, verify that:
(i) sin (A – B) = sin A cos B – cos A sin B
If cosec θ = `sqrt5`, find the value of:
- 2 - sin2 θ - cos2 θ
- 2 + `1/sin^2"θ" – cos^2"θ"/sin^2"θ"`
Given : 5 cos A - 12 sin A = 0; evaluate:
`(sin "A"+cos"A")/(2 cos"A"– sin"A")`
Use the information given in the following figure to evaluate:
`(10)/sin x + (6)/sin y – 6 cot y`.
If cosB = `(1)/(3)` and ∠C = 90°, find sin A, and B and cot A.
From the given figure, find the values of cot B
From the given figure, prove that θ + ∅ = 90°. Also prove that there are two other right angled triangles. Find sin α, cos β and tan ∅