Advertisements
Advertisements
Question
In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of cos y
Solution
Since AD is median on BC, we have
BD = DC = `(1)/(2) xx "BC" = (1)/(2) xx 12` = 6cm
ΔADB is a right-angled triangle.
∴ AB2
= AD2 + BD2
= 82 + 62
= 64 + 36
= 100
⇒ AB = 10cm
ΔADC is a right-angled triangle.
∴ AC2
= AD2 + DC2
= 82 + 62
= 64 + 36
= 100
⇒ AC = 10cm
cos y
= `"AD"/"AC"`
= `(8)/(10)`
= `(4)/(5)`.
APPEARS IN
RELATED QUESTIONS
If θ = 30° verify that `sin 2theta = (2 tan theta)/(1 + tan^2 theta)`
If A = B = 60°, verify that cos (A − B) = cos A cos B + sin A sin B
If sin θ = cos (θ – 45°), where θ – 45° are acute angles, find the degree measure of θ
If tan θ =`15/ 8 `, find the values of all T-ratios of θ.
Verify each of the following:
(iii) `2 sin 30^0 cos 30^0`
Given: tan A = `4/3 , "find" : ("cosec""A")/(cot "A"– sec "A")`
If sin A = `(sqrt3)/(2)` and cos B = `(sqrt3)/(2)` , find the value of : `(tan"A" – tan"B")/(1+tan"A" tan"B")`
If sec A = `sqrt2` , find : `(3cot^2 "A"+ 2 sin^2 "A")/ (tan^2 "A" – cos ^2 "A")`.
If 5 cos θ = 3, evaluate : `(co secθ – cot θ)/(co secθ + cot θ)`
In the given figure, PQR is a triangle, in which QS ⊥ PR, QS = 3 cm, PS = 4 cm and QR = 12 cm, find the value of: 4sin2R - `(1)/("tan"^2"P")`