Advertisements
Advertisements
Question
If θ = 30° verify that `sin 2theta = (2 tan theta)/(1 + tan^2 theta)`
Solution
Given θ = 30° ....(1)
To veriy
`sin 2theta = (2 tan theta)/(1 + tan^2 theta)` ....(2)
`sin 2 theta = sin 2 xx 30`
= sin 60
`= sqrt3/2`
Now consider right hand side
`(2 tan theta)/(1 + tan^2 theta) = (2 tan 30)/(1 + tan^2 30)`
`= (2 xx 1/sqrt3)/(1 + (1/sqrt3)^2)`
`= sqrt3/2`
Hence it is verified that,
`sin 2theta = (2 tan theta)/(1 + tan^2 theta)`
APPEARS IN
RELATED QUESTIONS
If ∠A and ∠P are acute angles such that tan A = tan P, then show that ∠A = ∠P.
If `sin (A – B) = 1/2` and `cos (A + B) = 1/2`, `0^@` < A + `B <= 90^@`, A > B Find A and B.
In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of Sin A cos C + Cos A Sin C
If a right ΔABC , right-angled at B, if tan A=1 then verify that 2sin A . cos A = 1
If cot θ= 1; find the value of: 5 tan2 θ+ 2 sin2 θ- 3
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cos C
In a right-angled triangle PQR, ∠PQR = 90°, QS ⊥ PR and tan R =`(5)/(12)`, find the value of tan ∠SQR
If cosec θ = `(29)/(20)`, find the value of: cosec θ - `(1)/("cot" θ)`
In the given figure, AC = 13cm, BC = 12 cm and ∠B = 90°. Without using tables, find the values of: `("cos A" - "sin A")/("cos A" + "sin A")`
From the given figure, find the values of tan C